压缩音频数据的类型分类

A. Rizzi, Nicola Maurizio Buccino, M. Panella, A. Uncini
{"title":"压缩音频数据的类型分类","authors":"A. Rizzi, Nicola Maurizio Buccino, M. Panella, A. Uncini","doi":"10.1109/MMSP.2008.4665157","DOIUrl":null,"url":null,"abstract":"This paper deals with the musical genre classification problem, starting from a set of features extracted directly from MPEG-1 layer III compressed audio data. The automatic classification of compressed audio signals into a short hierarchy of musical genres is explored. More specifically, three feature sets for representing timbre, rhythmic content and energy content are proposed for a four leafs tree genre hierarchy. The adopted set of features are computed from the spectral information available in the MPEG decoding stage. The performance and relative importance of the proposed approach is investigated by training a classification model using the audio collections proposed in musical genre contests. We also used an optimization strategy based on genetic algorithms. The results are comparable to those obtained by PCM-based musical genre classification systems.","PeriodicalId":402287,"journal":{"name":"2008 IEEE 10th Workshop on Multimedia Signal Processing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Genre classification of compressed audio data\",\"authors\":\"A. Rizzi, Nicola Maurizio Buccino, M. Panella, A. Uncini\",\"doi\":\"10.1109/MMSP.2008.4665157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the musical genre classification problem, starting from a set of features extracted directly from MPEG-1 layer III compressed audio data. The automatic classification of compressed audio signals into a short hierarchy of musical genres is explored. More specifically, three feature sets for representing timbre, rhythmic content and energy content are proposed for a four leafs tree genre hierarchy. The adopted set of features are computed from the spectral information available in the MPEG decoding stage. The performance and relative importance of the proposed approach is investigated by training a classification model using the audio collections proposed in musical genre contests. We also used an optimization strategy based on genetic algorithms. The results are comparable to those obtained by PCM-based musical genre classification systems.\",\"PeriodicalId\":402287,\"journal\":{\"name\":\"2008 IEEE 10th Workshop on Multimedia Signal Processing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE 10th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2008.4665157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 10th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2008.4665157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

本文从直接从MPEG-1 layer III压缩音频数据中提取的一组特征开始,处理音乐类型分类问题。研究了将压缩音频信号自动分类为短层次音乐类型的方法。更具体地说,提出了表示四叶树类型层次的音色、节奏含量和能量含量的三个特征集。所采用的特征集是从MPEG解码阶段可用的频谱信息中计算出来的。通过使用音乐类型比赛中提出的音频集训练分类模型,研究了所提出方法的性能和相对重要性。我们还使用了基于遗传算法的优化策略。结果与基于pcm的音乐类型分类系统的结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genre classification of compressed audio data
This paper deals with the musical genre classification problem, starting from a set of features extracted directly from MPEG-1 layer III compressed audio data. The automatic classification of compressed audio signals into a short hierarchy of musical genres is explored. More specifically, three feature sets for representing timbre, rhythmic content and energy content are proposed for a four leafs tree genre hierarchy. The adopted set of features are computed from the spectral information available in the MPEG decoding stage. The performance and relative importance of the proposed approach is investigated by training a classification model using the audio collections proposed in musical genre contests. We also used an optimization strategy based on genetic algorithms. The results are comparable to those obtained by PCM-based musical genre classification systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting doubly compressed JPEG images by using Mode Based First Digit Features Music tracking in audio streams from movies 3-D mesh representation and retrieval using Isomap manifold Adaptive wavelet coding of the depth map for stereoscopic view synthesis Fast encoding algorithms for video coding with adaptive interpolation filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1