支持以自动化过程为中心的质量约束检查的质量保证

Christoph Mayr-Dorn, Michael Vierhauser, Stefan Bichler, Felix Keplinger, J. Cleland-Huang, Alexander Egyed, Thomas Mehofer
{"title":"支持以自动化过程为中心的质量约束检查的质量保证","authors":"Christoph Mayr-Dorn, Michael Vierhauser, Stefan Bichler, Felix Keplinger, J. Cleland-Huang, Alexander Egyed, Thomas Mehofer","doi":"10.1109/ICSE43902.2021.00118","DOIUrl":null,"url":null,"abstract":"Regulations, standards, and guidelines for safety-critical systems stipulate stringent traceability but do not prescribe the corresponding, detailed software engineering process. Given the industrial practice of using only semi-formal notations to describe engineering processes, processes are rarely \"executable\" and developers have to spend significant manual effort in ensuring that they follow the steps mandated by quality assurance. The size and complexity of systems and regulations makes manual, timely feedback from Quality Assurance (QA) engineers infeasible. In this paper we propose a novel framework for tracking processes in the background, automatically checking QA constraints depending on process progress, and informing the developer of unfulfilled QA constraints. We evaluate our approach by applying it to two different case studies; one open source community system and a safety-critical system in the air-traffic control domain. Results from the analysis show that trace links are often corrected or completed after the fact and thus timely and automated constraint checking support has significant potential on reducing rework.","PeriodicalId":305167,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Supporting Quality Assurance with Automated Process-Centric Quality Constraints Checking\",\"authors\":\"Christoph Mayr-Dorn, Michael Vierhauser, Stefan Bichler, Felix Keplinger, J. Cleland-Huang, Alexander Egyed, Thomas Mehofer\",\"doi\":\"10.1109/ICSE43902.2021.00118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regulations, standards, and guidelines for safety-critical systems stipulate stringent traceability but do not prescribe the corresponding, detailed software engineering process. Given the industrial practice of using only semi-formal notations to describe engineering processes, processes are rarely \\\"executable\\\" and developers have to spend significant manual effort in ensuring that they follow the steps mandated by quality assurance. The size and complexity of systems and regulations makes manual, timely feedback from Quality Assurance (QA) engineers infeasible. In this paper we propose a novel framework for tracking processes in the background, automatically checking QA constraints depending on process progress, and informing the developer of unfulfilled QA constraints. We evaluate our approach by applying it to two different case studies; one open source community system and a safety-critical system in the air-traffic control domain. Results from the analysis show that trace links are often corrected or completed after the fact and thus timely and automated constraint checking support has significant potential on reducing rework.\",\"PeriodicalId\":305167,\"journal\":{\"name\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE43902.2021.00118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE43902.2021.00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

安全关键系统的规章、标准和指导方针规定了严格的可追溯性,但没有规定相应的、详细的软件工程过程。考虑到仅使用半形式化符号来描述工程过程的工业实践,过程很少是“可执行的”,开发人员必须花费大量的手工工作来确保他们遵循质量保证规定的步骤。系统和规则的规模和复杂性使得来自质量保证(QA)工程师的手动、及时的反馈变得不可行。在本文中,我们提出了一个新的框架,用于在后台跟踪过程,根据过程进度自动检查QA约束,并通知开发人员未实现的QA约束。我们通过将其应用于两个不同的案例研究来评估我们的方法;一个开源社区系统和一个空中交通管制领域的安全关键系统。分析结果表明,跟踪环节经常在事后被纠正或完成,因此及时和自动化的约束检查支持在减少返工方面具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supporting Quality Assurance with Automated Process-Centric Quality Constraints Checking
Regulations, standards, and guidelines for safety-critical systems stipulate stringent traceability but do not prescribe the corresponding, detailed software engineering process. Given the industrial practice of using only semi-formal notations to describe engineering processes, processes are rarely "executable" and developers have to spend significant manual effort in ensuring that they follow the steps mandated by quality assurance. The size and complexity of systems and regulations makes manual, timely feedback from Quality Assurance (QA) engineers infeasible. In this paper we propose a novel framework for tracking processes in the background, automatically checking QA constraints depending on process progress, and informing the developer of unfulfilled QA constraints. We evaluate our approach by applying it to two different case studies; one open source community system and a safety-critical system in the air-traffic control domain. Results from the analysis show that trace links are often corrected or completed after the fact and thus timely and automated constraint checking support has significant potential on reducing rework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MuDelta: Delta-Oriented Mutation Testing at Commit Time Verifying Determinism in Sequential Programs Data-Oriented Differential Testing of Object-Relational Mapping Systems IoT Bugs and Development Challenges Onboarding vs. Diversity, Productivity and Quality — Empirical Study of the OpenStack Ecosystem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1