在勘探地球科学中降低风险的综合地球物理和机器学习

P. Dell’Aversana, B. Ciurlo, S. Colombo
{"title":"在勘探地球科学中降低风险的综合地球物理和机器学习","authors":"P. Dell’Aversana, B. Ciurlo, S. Colombo","doi":"10.3997/2214-4609.201801619","DOIUrl":null,"url":null,"abstract":"Summary We discuss how Machine Learning (ML) can support the integration workflow of heterogeneous geophysical data sets in the process of exploration risk evaluation and/or in the process of field appraisal. Data set includes seismic, electromagnetic, gravity and borehole measurements. We combine sequential geophysical modelling and inversion with statistical and automatic classification approaches commonly used in the field of Machine Learning. We applied this “hybrid approach” to two multidisciplinary geophysical data sets recorded in different geological settings, obtaining encouraging results in both cases.","PeriodicalId":325587,"journal":{"name":"80th EAGE Conference and Exhibition 2018","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Integrated Geophysics and Machine Learning for Risk Mitigation in Exploration Geosciences\",\"authors\":\"P. Dell’Aversana, B. Ciurlo, S. Colombo\",\"doi\":\"10.3997/2214-4609.201801619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary We discuss how Machine Learning (ML) can support the integration workflow of heterogeneous geophysical data sets in the process of exploration risk evaluation and/or in the process of field appraisal. Data set includes seismic, electromagnetic, gravity and borehole measurements. We combine sequential geophysical modelling and inversion with statistical and automatic classification approaches commonly used in the field of Machine Learning. We applied this “hybrid approach” to two multidisciplinary geophysical data sets recorded in different geological settings, obtaining encouraging results in both cases.\",\"PeriodicalId\":325587,\"journal\":{\"name\":\"80th EAGE Conference and Exhibition 2018\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"80th EAGE Conference and Exhibition 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201801619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"80th EAGE Conference and Exhibition 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201801619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们讨论了机器学习(ML)如何在勘探风险评估和/或现场评估过程中支持异构地球物理数据集的集成工作流程。数据集包括地震、电磁、重力和井眼测量。我们将顺序地球物理建模和反演与机器学习领域常用的统计和自动分类方法相结合。我们将这种“混合方法”应用于在不同地质环境下记录的两个多学科地球物理数据集,在两种情况下都获得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Geophysics and Machine Learning for Risk Mitigation in Exploration Geosciences
Summary We discuss how Machine Learning (ML) can support the integration workflow of heterogeneous geophysical data sets in the process of exploration risk evaluation and/or in the process of field appraisal. Data set includes seismic, electromagnetic, gravity and borehole measurements. We combine sequential geophysical modelling and inversion with statistical and automatic classification approaches commonly used in the field of Machine Learning. We applied this “hybrid approach” to two multidisciplinary geophysical data sets recorded in different geological settings, obtaining encouraging results in both cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multivariate Constraints Time-Depth Conversion Method Based On Velocity Tomography and Application in Bohai K Oilfield Petroleum Exploration Prospect of the Area Longkou 7-6, Bohai Bay Basin, Offshore China Structure Preserving Regularization for Multitrace Sparse Deconvolution Private Equity Funding the Future of the North Sea? – Siccar Point Energy Case Study Dynamics and Evolution of Growth Faults - Implications on Stratigraphic Geometries and Facies Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1