{"title":"关注神经文本分类中的句子间特征","authors":"Billy Chiu, Sunil Kumar Sahu, Neha Sengupta, Derek Thomas, Mohammady Mahdy","doi":"10.1145/3397271.3401203","DOIUrl":null,"url":null,"abstract":"Text classification requires a deep understanding of the linguistic features in text; in particular, the intra-sentential (local) and inter-sentential features (global). Models that operate on word sequences have been successfully used to capture the local features, yet they are not effective in capturing the global features in long-text. We investigate graph-level extensions to such models and propose a novel architecture for combining alternative text features. It uses an attention mechanism to dynamically decide how much information to use from a sequence- or graph-level component. We evaluated different architectures on a range of text classification datasets, and graph-level extensions were found to improve performance on most benchmarks. In addition, the attention-based architecture, as adaptively-learned from the data, outperforms the generic and fixed-value concatenation ones.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Attending to Inter-sentential Features in Neural Text Classification\",\"authors\":\"Billy Chiu, Sunil Kumar Sahu, Neha Sengupta, Derek Thomas, Mohammady Mahdy\",\"doi\":\"10.1145/3397271.3401203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text classification requires a deep understanding of the linguistic features in text; in particular, the intra-sentential (local) and inter-sentential features (global). Models that operate on word sequences have been successfully used to capture the local features, yet they are not effective in capturing the global features in long-text. We investigate graph-level extensions to such models and propose a novel architecture for combining alternative text features. It uses an attention mechanism to dynamically decide how much information to use from a sequence- or graph-level component. We evaluated different architectures on a range of text classification datasets, and graph-level extensions were found to improve performance on most benchmarks. In addition, the attention-based architecture, as adaptively-learned from the data, outperforms the generic and fixed-value concatenation ones.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Attending to Inter-sentential Features in Neural Text Classification
Text classification requires a deep understanding of the linguistic features in text; in particular, the intra-sentential (local) and inter-sentential features (global). Models that operate on word sequences have been successfully used to capture the local features, yet they are not effective in capturing the global features in long-text. We investigate graph-level extensions to such models and propose a novel architecture for combining alternative text features. It uses an attention mechanism to dynamically decide how much information to use from a sequence- or graph-level component. We evaluated different architectures on a range of text classification datasets, and graph-level extensions were found to improve performance on most benchmarks. In addition, the attention-based architecture, as adaptively-learned from the data, outperforms the generic and fixed-value concatenation ones.