一类新的不精确行搜索的记忆梯度方法

Zhenjun Shi
{"title":"一类新的不精确行搜索的记忆梯度方法","authors":"Zhenjun Shi","doi":"10.1515/1569395054069008","DOIUrl":null,"url":null,"abstract":"The paper presents a new class of memory gradient methods with inexact line searches for unconstrained minimization problems. The methods use more previous iterative information than other methods to generate a search direction and use inexact line searches to select a step-size at each iteration. It is proved that the new methods have global convergence under weak mild conditions. The convergence rate of these methods is also investigated under some special cases. Some numerical experiments show that these new algorithms converge more stably than other line search methods and are effective in solving large scale unconstrained minimization problems.","PeriodicalId":342521,"journal":{"name":"J. Num. Math.","volume":"36 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new class of memory gradient methods with inexact line searches\",\"authors\":\"Zhenjun Shi\",\"doi\":\"10.1515/1569395054069008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a new class of memory gradient methods with inexact line searches for unconstrained minimization problems. The methods use more previous iterative information than other methods to generate a search direction and use inexact line searches to select a step-size at each iteration. It is proved that the new methods have global convergence under weak mild conditions. The convergence rate of these methods is also investigated under some special cases. Some numerical experiments show that these new algorithms converge more stably than other line search methods and are effective in solving large scale unconstrained minimization problems.\",\"PeriodicalId\":342521,\"journal\":{\"name\":\"J. Num. Math.\",\"volume\":\"36 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Num. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/1569395054069008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Num. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/1569395054069008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对无约束最小化问题,提出了一类新的不精确线搜索记忆梯度方法。与其他方法相比,该方法使用更多的先前迭代信息来生成搜索方向,并在每次迭代时使用不精确的行搜索来选择步长。证明了该方法在弱温和条件下具有全局收敛性。在一些特殊情况下,研究了这些方法的收敛速度。数值实验结果表明,该算法比其他直线搜索方法收敛更稳定,能有效地解决大规模无约束最小化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new class of memory gradient methods with inexact line searches
The paper presents a new class of memory gradient methods with inexact line searches for unconstrained minimization problems. The methods use more previous iterative information than other methods to generate a search direction and use inexact line searches to select a step-size at each iteration. It is proved that the new methods have global convergence under weak mild conditions. The convergence rate of these methods is also investigated under some special cases. Some numerical experiments show that these new algorithms converge more stably than other line search methods and are effective in solving large scale unconstrained minimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiharmonic finite element analysis of a time-periodic parabolic optimal control problem A class of hybrid linear multistep methods with A(ɑ)-stability properties for stiff IVPs in ODEs High performance domain decomposition methods on massively parallel architectures with freefem++ New development in freefem++ Angles between subspaces and their tangents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1