基于统计信息的城市道路图像分割算法

De-Shun Yang, Jianhou Gan, Yi Luo
{"title":"基于统计信息的城市道路图像分割算法","authors":"De-Shun Yang, Jianhou Gan, Yi Luo","doi":"10.1109/GEOINFORMATICS.2018.8557187","DOIUrl":null,"url":null,"abstract":"Urban road image segmentation is an important technology of intelligent city management and pilotless driving. In order to improve the effect of image segmentation, direct at the deficiency of single seed point and fixed threshold of traditional region growing algorithm, a seed selection method based on the gray level of two-dimensional histogram and local variance is proposed, and the dynamic threshold is used to change the region growing rule. The experimental results show that the seeds selected by this method can be highly representative, and realize the complete segmentation of the image. Based on the dynamic threshold region growth rule, the image segmentation has a better effect.","PeriodicalId":142380,"journal":{"name":"2018 26th International Conference on Geoinformatics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Urban Road Image Segmentation Algorithm Based on Statistical Information\",\"authors\":\"De-Shun Yang, Jianhou Gan, Yi Luo\",\"doi\":\"10.1109/GEOINFORMATICS.2018.8557187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban road image segmentation is an important technology of intelligent city management and pilotless driving. In order to improve the effect of image segmentation, direct at the deficiency of single seed point and fixed threshold of traditional region growing algorithm, a seed selection method based on the gray level of two-dimensional histogram and local variance is proposed, and the dynamic threshold is used to change the region growing rule. The experimental results show that the seeds selected by this method can be highly representative, and realize the complete segmentation of the image. Based on the dynamic threshold region growth rule, the image segmentation has a better effect.\",\"PeriodicalId\":142380,\"journal\":{\"name\":\"2018 26th International Conference on Geoinformatics\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th International Conference on Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GEOINFORMATICS.2018.8557187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEOINFORMATICS.2018.8557187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

城市道路图像分割是智能城市管理和无人驾驶的重要技术。为了提高图像分割效果,针对传统区域生长算法种子点单一、阈值固定的不足,提出了一种基于二维直方图灰度和局部方差的种子选择方法,并利用动态阈值改变区域生长规律。实验结果表明,该方法选择的种子具有较高的代表性,实现了对图像的完整分割。基于动态阈值区域增长规则的图像分割效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Urban Road Image Segmentation Algorithm Based on Statistical Information
Urban road image segmentation is an important technology of intelligent city management and pilotless driving. In order to improve the effect of image segmentation, direct at the deficiency of single seed point and fixed threshold of traditional region growing algorithm, a seed selection method based on the gray level of two-dimensional histogram and local variance is proposed, and the dynamic threshold is used to change the region growing rule. The experimental results show that the seeds selected by this method can be highly representative, and realize the complete segmentation of the image. Based on the dynamic threshold region growth rule, the image segmentation has a better effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Dynamic Evaluation of Urban Community Livability Based on Multi-Source Spatio-Temporal Data Hotspots Trends and Spatio-Temporal Distributions for an Investigative in the Field of Chinese Educational Technology Congestion Detection and Distribution Pattern Analysis Based on Spatiotemporal Density Clustering Spatial and Temporal Analysis of Educational Development in Yunnan on the Last Two Decades A Top-Down Application of Multi-Resolution Markov Random Fields with Bilateral Information in Semantic Segmentation of Remote Sensing Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1