{"title":"基于矩阵分解和邻域的推荐系统的可扩展性评价","authors":"Nikita Taneja, H. Thakur","doi":"10.5815/ijitcs.2023.01.03","DOIUrl":null,"url":null,"abstract":"Recommendation Systems are everywhere, from offline shopping malls to major e-commerce websites, all use recommendation systems to enhance customer experience and grow profit. With a growing customer base, the requirement to store their interest, behavior and respond accordingly requires plenty of scalability. Thus, it is very important for companies to select a scalable recommender system, which can provide the recommendations not just accurately but with low latency as well. This paper focuses on the comparison between the four methods KMeans, KNN, SVD, and SVD++ to find out the better algorithm in terms of scalability. We have analyzed the methods on different parameters i.e., Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Precision, Recall and Running Time (Scalability). Results are elaborated such that selection becomes quite easy depending upon the user requirements.","PeriodicalId":130361,"journal":{"name":"International Journal of Information Technology and Computer Science","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluating the Scalability of Matrix Factorization and Neighborhood Based Recommender Systems\",\"authors\":\"Nikita Taneja, H. Thakur\",\"doi\":\"10.5815/ijitcs.2023.01.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommendation Systems are everywhere, from offline shopping malls to major e-commerce websites, all use recommendation systems to enhance customer experience and grow profit. With a growing customer base, the requirement to store their interest, behavior and respond accordingly requires plenty of scalability. Thus, it is very important for companies to select a scalable recommender system, which can provide the recommendations not just accurately but with low latency as well. This paper focuses on the comparison between the four methods KMeans, KNN, SVD, and SVD++ to find out the better algorithm in terms of scalability. We have analyzed the methods on different parameters i.e., Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Precision, Recall and Running Time (Scalability). Results are elaborated such that selection becomes quite easy depending upon the user requirements.\",\"PeriodicalId\":130361,\"journal\":{\"name\":\"International Journal of Information Technology and Computer Science\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijitcs.2023.01.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijitcs.2023.01.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating the Scalability of Matrix Factorization and Neighborhood Based Recommender Systems
Recommendation Systems are everywhere, from offline shopping malls to major e-commerce websites, all use recommendation systems to enhance customer experience and grow profit. With a growing customer base, the requirement to store their interest, behavior and respond accordingly requires plenty of scalability. Thus, it is very important for companies to select a scalable recommender system, which can provide the recommendations not just accurately but with low latency as well. This paper focuses on the comparison between the four methods KMeans, KNN, SVD, and SVD++ to find out the better algorithm in terms of scalability. We have analyzed the methods on different parameters i.e., Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Precision, Recall and Running Time (Scalability). Results are elaborated such that selection becomes quite easy depending upon the user requirements.