移动云计算中安全业务的资源分配

Hongbin Liang, Dijiang Huang, L. Cai, X. Shen, D. Peng
{"title":"移动云计算中安全业务的资源分配","authors":"Hongbin Liang, Dijiang Huang, L. Cai, X. Shen, D. Peng","doi":"10.1109/INFCOMW.2011.5928806","DOIUrl":null,"url":null,"abstract":"Mobile cloud is a machine-to-machine service model, where a mobile device can use the cloud for searching, data mining, and multimedia processing. To protect the processed data, security services, i.e., encryption, decryption, authentications, etc., are performed in the cloud. In general, we can classify cloud security services in two categories: Critical Security (CS) service and Normal Security (NS) service. CS service provides strong security protection such as using longer key size, strict security access policies, isolations for protecting data, and so on. The CS service usually occupies more cloud computing resources, however it generates more rewards to the cloud provider since the CS service users need to pay more for using the CS service. With the increase of the number of CS and NS service users, it is important to allocate the cloud resource to maximize the system rewards with the considerations of the cloud resource consumption and incomes generated from cloud users. To address this issue, we propose a Security Service Admission Model (SSAM) based on Semi-Markov Decision Process to model the system reward for the cloud provider. We, first, define system states by a tuple represented by the numbers of cloud users and their associated security service categories, and current event type (i.e., arrival or departure).We then derive the system steady-state probability and service request blocking probability by using the proposed SSAM. Numerical results show that the obtained theoretic probabilities are consistent with our simulation results.","PeriodicalId":402219,"journal":{"name":"2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Resource allocation for security services in mobile cloud computing\",\"authors\":\"Hongbin Liang, Dijiang Huang, L. Cai, X. Shen, D. Peng\",\"doi\":\"10.1109/INFCOMW.2011.5928806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile cloud is a machine-to-machine service model, where a mobile device can use the cloud for searching, data mining, and multimedia processing. To protect the processed data, security services, i.e., encryption, decryption, authentications, etc., are performed in the cloud. In general, we can classify cloud security services in two categories: Critical Security (CS) service and Normal Security (NS) service. CS service provides strong security protection such as using longer key size, strict security access policies, isolations for protecting data, and so on. The CS service usually occupies more cloud computing resources, however it generates more rewards to the cloud provider since the CS service users need to pay more for using the CS service. With the increase of the number of CS and NS service users, it is important to allocate the cloud resource to maximize the system rewards with the considerations of the cloud resource consumption and incomes generated from cloud users. To address this issue, we propose a Security Service Admission Model (SSAM) based on Semi-Markov Decision Process to model the system reward for the cloud provider. We, first, define system states by a tuple represented by the numbers of cloud users and their associated security service categories, and current event type (i.e., arrival or departure).We then derive the system steady-state probability and service request blocking probability by using the proposed SSAM. Numerical results show that the obtained theoretic probabilities are consistent with our simulation results.\",\"PeriodicalId\":402219,\"journal\":{\"name\":\"2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFCOMW.2011.5928806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2011.5928806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

移动云是一种机器对机器的服务模型,移动设备可以使用云进行搜索、数据挖掘和多媒体处理。为了保护处理后的数据,安全服务,即加密、解密、身份验证等,都在云中执行。通常,我们可以将云安全服务分为两类:关键安全(CS)服务和正常安全(NS)服务。CS服务提供了较长的密钥大小、严格的安全访问策略、隔离数据保护等强大的安全保护。CS服务通常会占用更多的云计算资源,但它会给云提供商带来更多的回报,因为CS服务用户使用CS服务需要支付更多的费用。随着CS和NS业务用户数量的增加,考虑云资源的消耗和云用户产生的收入,分配云资源以最大化系统回报是很重要的。为了解决这个问题,我们提出了一个基于半马尔可夫决策过程的安全服务准入模型(SSAM)来为云提供商建模系统奖励。首先,我们通过一个元组定义系统状态,该元组由云用户数量及其相关的安全服务类别和当前事件类型(即到达或离开)表示。然后,利用所提出的SSAM算法推导出系统稳态概率和服务请求阻塞概率。数值计算结果表明,所得的理论概率与仿真结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resource allocation for security services in mobile cloud computing
Mobile cloud is a machine-to-machine service model, where a mobile device can use the cloud for searching, data mining, and multimedia processing. To protect the processed data, security services, i.e., encryption, decryption, authentications, etc., are performed in the cloud. In general, we can classify cloud security services in two categories: Critical Security (CS) service and Normal Security (NS) service. CS service provides strong security protection such as using longer key size, strict security access policies, isolations for protecting data, and so on. The CS service usually occupies more cloud computing resources, however it generates more rewards to the cloud provider since the CS service users need to pay more for using the CS service. With the increase of the number of CS and NS service users, it is important to allocate the cloud resource to maximize the system rewards with the considerations of the cloud resource consumption and incomes generated from cloud users. To address this issue, we propose a Security Service Admission Model (SSAM) based on Semi-Markov Decision Process to model the system reward for the cloud provider. We, first, define system states by a tuple represented by the numbers of cloud users and their associated security service categories, and current event type (i.e., arrival or departure).We then derive the system steady-state probability and service request blocking probability by using the proposed SSAM. Numerical results show that the obtained theoretic probabilities are consistent with our simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A robust controller of dynamic networks and its verification by the simulation of the heat shock response network with reliable signal transmission An energy-aware distributed approach for content and network management Lightweight privacy-preserving routing and incentive protocol for hybrid ad hoc wireless network Cooperative spectrum sensing in TV White Spaces: When Cognitive Radio meets Cloud A Reservation-based Smart Parking System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1