N. S. Smirnova, M. Dumbser, M. Petrov, Alexander V. Chikitkin, E. Romenski
{"title":"两相流高性能模拟SHTC模型的通量分裂方法","authors":"N. S. Smirnova, M. Dumbser, M. Petrov, Alexander V. Chikitkin, E. Romenski","doi":"10.14529/JSFI180315","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new flux splitting approach for the symmetric hyperbolic thermodynamically compatible (SHTC) equations of compressible two-phase flow which can be used in finite-volume methods. The approach is based on splitting the entire model into acoustic and pseudo-convective submodels. The associated acoustic system is numerically solved applying HLLC-type Riemann solver for its Lagrangian form. The convective part of the pseudo-convective submodel is solved by a standart upwind scheme. For other parts of the pseudo-convective submodel we apply the FORCE method. A comparison is carried out with unsplit methods. Numerical results are obtained on several test problems. Results show good agreement with exact solutions and reference calculations.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Flux Splitting Method for the SHTC Model for High-performance Simulations of Two-phase Flows\",\"authors\":\"N. S. Smirnova, M. Dumbser, M. Petrov, Alexander V. Chikitkin, E. Romenski\",\"doi\":\"10.14529/JSFI180315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new flux splitting approach for the symmetric hyperbolic thermodynamically compatible (SHTC) equations of compressible two-phase flow which can be used in finite-volume methods. The approach is based on splitting the entire model into acoustic and pseudo-convective submodels. The associated acoustic system is numerically solved applying HLLC-type Riemann solver for its Lagrangian form. The convective part of the pseudo-convective submodel is solved by a standart upwind scheme. For other parts of the pseudo-convective submodel we apply the FORCE method. A comparison is carried out with unsplit methods. Numerical results are obtained on several test problems. Results show good agreement with exact solutions and reference calculations.\",\"PeriodicalId\":338883,\"journal\":{\"name\":\"Supercomput. Front. Innov.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supercomput. Front. Innov.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14529/JSFI180315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/JSFI180315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Flux Splitting Method for the SHTC Model for High-performance Simulations of Two-phase Flows
In this paper we propose a new flux splitting approach for the symmetric hyperbolic thermodynamically compatible (SHTC) equations of compressible two-phase flow which can be used in finite-volume methods. The approach is based on splitting the entire model into acoustic and pseudo-convective submodels. The associated acoustic system is numerically solved applying HLLC-type Riemann solver for its Lagrangian form. The convective part of the pseudo-convective submodel is solved by a standart upwind scheme. For other parts of the pseudo-convective submodel we apply the FORCE method. A comparison is carried out with unsplit methods. Numerical results are obtained on several test problems. Results show good agreement with exact solutions and reference calculations.