并行进化算法中的变大小种群

Gabriela F. Minetti, Hugo Alfonso
{"title":"并行进化算法中的变大小种群","authors":"Gabriela F. Minetti, Hugo Alfonso","doi":"10.1109/ISDA.2005.99","DOIUrl":null,"url":null,"abstract":"Considering the population size is a critical parameter to define in evolutionary computation, in this paper an improved parallel evolutionary algorithm that incorporates different mechanisms to adapt the population size to the current status, is presented. Those mechanisms are based on resizing on fitness improvement GA (PRoFIGA) and variable population size (GAVaPS). Results indicate these incorporations are a reasonable choice when refinement in solutions is necessary.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Variable size population in parallel evolutionary algorithms\",\"authors\":\"Gabriela F. Minetti, Hugo Alfonso\",\"doi\":\"10.1109/ISDA.2005.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the population size is a critical parameter to define in evolutionary computation, in this paper an improved parallel evolutionary algorithm that incorporates different mechanisms to adapt the population size to the current status, is presented. Those mechanisms are based on resizing on fitness improvement GA (PRoFIGA) and variable population size (GAVaPS). Results indicate these incorporations are a reasonable choice when refinement in solutions is necessary.\",\"PeriodicalId\":345842,\"journal\":{\"name\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2005.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

考虑到种群规模是进化计算中定义的一个关键参数,本文提出了一种改进的并行进化算法,该算法结合了不同的机制来适应种群规模的现状。这些机制基于适应度改进遗传算法(PRoFIGA)和可变种群大小(GAVaPS)。结果表明,这些合并是一个合理的选择,当细化的解决方案是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variable size population in parallel evolutionary algorithms
Considering the population size is a critical parameter to define in evolutionary computation, in this paper an improved parallel evolutionary algorithm that incorporates different mechanisms to adapt the population size to the current status, is presented. Those mechanisms are based on resizing on fitness improvement GA (PRoFIGA) and variable population size (GAVaPS). Results indicate these incorporations are a reasonable choice when refinement in solutions is necessary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed service-oriented architecture for information extraction system "Semanta" HAUNT-24: 24-bit hierarchical, application-confined unique naming technique The verification's criterion of learning algorithm New evolutionary approach to the GCP: a premature convergence and an evolution process character A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1