基于色度矢量分析的音乐电视节目音乐部分分割

Aiko Uemura, J. Katto, Kyota Higa, Masumi Ishikawa, T. Nomura
{"title":"基于色度矢量分析的音乐电视节目音乐部分分割","authors":"Aiko Uemura, J. Katto, Kyota Higa, Masumi Ishikawa, T. Nomura","doi":"10.1109/ISM.2012.14","DOIUrl":null,"url":null,"abstract":"This paper presents a music part detection method incorporating chroma vector analysis for use with music TV programs. Results show that envelopes of chroma components of music signals tend to have horizontal (i.e. temporal) correlation in time-frequency representation because music signals have a periodic chord sequences. Based on this fact, we analyze time series of chroma components and attempt to segment music parts in music TV programs from other parts. Experimental results show an F-measure of 0.78, which is better than that obtained using the previous method.","PeriodicalId":282528,"journal":{"name":"2012 IEEE International Symposium on Multimedia","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Music Part Segmentation in Music TV Programs Based on Chroma Vector Analysis\",\"authors\":\"Aiko Uemura, J. Katto, Kyota Higa, Masumi Ishikawa, T. Nomura\",\"doi\":\"10.1109/ISM.2012.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a music part detection method incorporating chroma vector analysis for use with music TV programs. Results show that envelopes of chroma components of music signals tend to have horizontal (i.e. temporal) correlation in time-frequency representation because music signals have a periodic chord sequences. Based on this fact, we analyze time series of chroma components and attempt to segment music parts in music TV programs from other parts. Experimental results show an F-measure of 0.78, which is better than that obtained using the previous method.\",\"PeriodicalId\":282528,\"journal\":{\"name\":\"2012 IEEE International Symposium on Multimedia\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2012.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2012.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种结合色度矢量分析的音乐片段检测方法,并将其应用于音乐电视节目中。结果表明,由于音乐信号具有周期性和弦序列,因此音乐信号的色度成分包络在时频表示上具有水平相关性(即时间相关性)。基于这一事实,我们分析了时间序列的色度分量,并尝试将音乐电视节目中的音乐部分从其他部分中分离出来。实验结果表明,该方法的f值为0.78,优于以前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Music Part Segmentation in Music TV Programs Based on Chroma Vector Analysis
This paper presents a music part detection method incorporating chroma vector analysis for use with music TV programs. Results show that envelopes of chroma components of music signals tend to have horizontal (i.e. temporal) correlation in time-frequency representation because music signals have a periodic chord sequences. Based on this fact, we analyze time series of chroma components and attempt to segment music parts in music TV programs from other parts. Experimental results show an F-measure of 0.78, which is better than that obtained using the previous method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detailed Comparative Analysis of VP8 and H.264 Enhancing the MST-CSS Representation Using Robust Geometric Features, for Efficient Content Based Video Retrieval (CBVR) A Standardized Metadata Set for Annotation of Virtual and Remote Laboratories Using Wavelets and Gaussian Mixture Models for Audio Classification A Data Aware Admission Control Technique for Social Live Streams (SOLISs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1