一种基于多聚类复杂神经网络的盲检测新算法

Jinwen Wu, Hai-Hong Jin, Shujuan Yu, Yun Zhang
{"title":"一种基于多聚类复杂神经网络的盲检测新算法","authors":"Jinwen Wu, Hai-Hong Jin, Shujuan Yu, Yun Zhang","doi":"10.1109/IMCEC51613.2021.9482354","DOIUrl":null,"url":null,"abstract":"Aiming at solving the problems that the CHNN-RIHM (Complex-valued Hopfield Neural Network Real-Imaginary-type Hard-Multistate-activation-function) is easy to get into a local optimization and requires a large amount of data, we propose to use Signal Blind Detection Algorithm Based on MC-CHNN (Multi-Clustering Complex-valued Hopfield Neural Network), construct a new energy function and prove the stability of MC-CHNN. The optimization scheme of MC-CHNN is as follows: we use a piecewise annealing function to improve the convergence speed of blind detection. To further reduce the complexity of the MC-CHNN algorithm and improve the sensitivity of MC-CHNN, we propose to apply a new activation function called the multi-clustering function to MC-CHNN and replace the activation function of CHNN-RIHM with multi-clustering function when dealing with discrete multilevel signals. The simulation results show that the MC-CHNN has a faster convergence speed, stronger anti-noise capability, and can be better applied to low SNR than its competitors.","PeriodicalId":240400,"journal":{"name":"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Blind Detection Algorithm Based on Multi-Clustering Complex Neural Network\",\"authors\":\"Jinwen Wu, Hai-Hong Jin, Shujuan Yu, Yun Zhang\",\"doi\":\"10.1109/IMCEC51613.2021.9482354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at solving the problems that the CHNN-RIHM (Complex-valued Hopfield Neural Network Real-Imaginary-type Hard-Multistate-activation-function) is easy to get into a local optimization and requires a large amount of data, we propose to use Signal Blind Detection Algorithm Based on MC-CHNN (Multi-Clustering Complex-valued Hopfield Neural Network), construct a new energy function and prove the stability of MC-CHNN. The optimization scheme of MC-CHNN is as follows: we use a piecewise annealing function to improve the convergence speed of blind detection. To further reduce the complexity of the MC-CHNN algorithm and improve the sensitivity of MC-CHNN, we propose to apply a new activation function called the multi-clustering function to MC-CHNN and replace the activation function of CHNN-RIHM with multi-clustering function when dealing with discrete multilevel signals. The simulation results show that the MC-CHNN has a faster convergence speed, stronger anti-noise capability, and can be better applied to low SNR than its competitors.\",\"PeriodicalId\":240400,\"journal\":{\"name\":\"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCEC51613.2021.9482354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCEC51613.2021.9482354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对复值Hopfield神经网络实数型硬多态激活函数(CHNN-RIHM)易陷入局部最优且需要大量数据的问题,提出采用基于多聚类复值Hopfield神经网络(MC-CHNN)的信号盲检测算法,构造新的能量函数并证明MC-CHNN的稳定性。MC-CHNN的优化方案如下:采用分段退火函数提高盲检测的收敛速度。为了进一步降低MC-CHNN算法的复杂度,提高MC-CHNN的灵敏度,我们提出在MC-CHNN中引入一种新的激活函数——多聚类函数,并在处理离散多电平信号时用多聚类函数代替CHNN-RIHM的激活函数。仿真结果表明,MC-CHNN具有更快的收敛速度和更强的抗噪能力,能够更好地应用于低信噪比的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Blind Detection Algorithm Based on Multi-Clustering Complex Neural Network
Aiming at solving the problems that the CHNN-RIHM (Complex-valued Hopfield Neural Network Real-Imaginary-type Hard-Multistate-activation-function) is easy to get into a local optimization and requires a large amount of data, we propose to use Signal Blind Detection Algorithm Based on MC-CHNN (Multi-Clustering Complex-valued Hopfield Neural Network), construct a new energy function and prove the stability of MC-CHNN. The optimization scheme of MC-CHNN is as follows: we use a piecewise annealing function to improve the convergence speed of blind detection. To further reduce the complexity of the MC-CHNN algorithm and improve the sensitivity of MC-CHNN, we propose to apply a new activation function called the multi-clustering function to MC-CHNN and replace the activation function of CHNN-RIHM with multi-clustering function when dealing with discrete multilevel signals. The simulation results show that the MC-CHNN has a faster convergence speed, stronger anti-noise capability, and can be better applied to low SNR than its competitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The HT-TBD Algorithm for Large Maneuvering Targets with Fewer Beats and More Groups Key Technologies of Heterogeneous System General Data Service based on Virtual Table Research on Plant Disease Detection Technology Based on Wireless Sensor Network Leaf Segmentation Algorithm Based on Improved U-shaped Network under Complex Background Research on Anti-jamming Simulation based on Circular Array Antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1