阿拉伯语文本的感觉清单

Marwah Alian, A. Awajan
{"title":"阿拉伯语文本的感觉清单","authors":"Marwah Alian, A. Awajan","doi":"10.1109/ACIT50332.2020.9300054","DOIUrl":null,"url":null,"abstract":"Word sense disambiguation is the process of determining the proper meaning of a word according to its context. In this study, we represent the impact of word embedding on building Arabic sense inventory by an unsupervised approach. Three pre-trained embeddings are tested to investigate their effect on the resulting sense inventory and their efficiency in word sense disambiguation for Arabic context. Sense inventories are constructed using a fully unsupervised method based on graph-based word sense induction algorithm. The results show that Aravec-Twitter inventory achieves the best accuracy of 0.47 for 50-neighbors and a close accuracy to the Fasttext inventory for 200-neighbors.","PeriodicalId":193891,"journal":{"name":"2020 21st International Arab Conference on Information Technology (ACIT)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sense Inventories for Arabic Texts\",\"authors\":\"Marwah Alian, A. Awajan\",\"doi\":\"10.1109/ACIT50332.2020.9300054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Word sense disambiguation is the process of determining the proper meaning of a word according to its context. In this study, we represent the impact of word embedding on building Arabic sense inventory by an unsupervised approach. Three pre-trained embeddings are tested to investigate their effect on the resulting sense inventory and their efficiency in word sense disambiguation for Arabic context. Sense inventories are constructed using a fully unsupervised method based on graph-based word sense induction algorithm. The results show that Aravec-Twitter inventory achieves the best accuracy of 0.47 for 50-neighbors and a close accuracy to the Fasttext inventory for 200-neighbors.\",\"PeriodicalId\":193891,\"journal\":{\"name\":\"2020 21st International Arab Conference on Information Technology (ACIT)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 21st International Arab Conference on Information Technology (ACIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIT50332.2020.9300054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT50332.2020.9300054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

词义消歧是根据上下文确定一个词的正确意义的过程。在这项研究中,我们通过一种无监督的方法来描述词嵌入对建立阿拉伯语语义库的影响。测试了三个预训练的嵌入,以研究它们对产生的语义清单的影响以及它们在阿拉伯语上下文的词义消歧中的效率。使用基于基于图的词义归纳算法的完全无监督方法构建语义清单。结果表明,Aravec-Twitter清单在50个邻居的情况下达到了0.47的最佳精度,在200个邻居的情况下接近Fasttext清单的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sense Inventories for Arabic Texts
Word sense disambiguation is the process of determining the proper meaning of a word according to its context. In this study, we represent the impact of word embedding on building Arabic sense inventory by an unsupervised approach. Three pre-trained embeddings are tested to investigate their effect on the resulting sense inventory and their efficiency in word sense disambiguation for Arabic context. Sense inventories are constructed using a fully unsupervised method based on graph-based word sense induction algorithm. The results show that Aravec-Twitter inventory achieves the best accuracy of 0.47 for 50-neighbors and a close accuracy to the Fasttext inventory for 200-neighbors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wireless Sensor Network MAC Energy - efficiency Protocols: A Survey Keystroke Identifier Using Fuzzy Logic to Increase Password Security A seq2seq Neural Network based Conversational Agent for Gulf Arabic Dialect Machine Learning and Soft Robotics Studying and Analyzing the Fog-based Internet of Robotic Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1