用于切换AR中交互线性度的AI

Jing Qian, Laurent Denoue, Jacob T. Biehl, David A. Shamma
{"title":"用于切换AR中交互线性度的AI","authors":"Jing Qian, Laurent Denoue, Jacob T. Biehl, David A. Shamma","doi":"10.1109/AIVR.2018.00040","DOIUrl":null,"url":null,"abstract":"Interaction in augmented reality (AR) or mixed reality environments is generally classified into two modalities: linear (relative to object) or non-linear (relative to camera). Switching between these modes tailors the AR experience to different scenarios. Such interactions can be arduous in cases when on-board touch interaction is limited or restricted as is often the case in medical or industrial applications that require sterility. To solve this, we present Sound-to-Experience where the modality can be effectively toggled by noise or sound which is detected using a modern Artificial Intelligence deep-network classifier.","PeriodicalId":371868,"journal":{"name":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AI for Toggling the Linearity of Interactions in AR\",\"authors\":\"Jing Qian, Laurent Denoue, Jacob T. Biehl, David A. Shamma\",\"doi\":\"10.1109/AIVR.2018.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interaction in augmented reality (AR) or mixed reality environments is generally classified into two modalities: linear (relative to object) or non-linear (relative to camera). Switching between these modes tailors the AR experience to different scenarios. Such interactions can be arduous in cases when on-board touch interaction is limited or restricted as is often the case in medical or industrial applications that require sterility. To solve this, we present Sound-to-Experience where the modality can be effectively toggled by noise or sound which is detected using a modern Artificial Intelligence deep-network classifier.\",\"PeriodicalId\":371868,\"journal\":{\"name\":\"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIVR.2018.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR.2018.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

增强现实(AR)或混合现实环境中的交互通常分为两种模式:线性(相对于物体)或非线性(相对于相机)。在这些模式之间切换可以根据不同的场景定制AR体验。在需要无菌的医疗或工业应用中,当机载触摸交互受到限制或限制时,这种交互可能会很困难。为了解决这个问题,我们提出了声音到体验,其中模式可以通过使用现代人工智能深度网络分类器检测到的噪音或声音有效地切换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI for Toggling the Linearity of Interactions in AR
Interaction in augmented reality (AR) or mixed reality environments is generally classified into two modalities: linear (relative to object) or non-linear (relative to camera). Switching between these modes tailors the AR experience to different scenarios. Such interactions can be arduous in cases when on-board touch interaction is limited or restricted as is often the case in medical or industrial applications that require sterility. To solve this, we present Sound-to-Experience where the modality can be effectively toggled by noise or sound which is detected using a modern Artificial Intelligence deep-network classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Perceptual Evaluation of Generative Adversarial Network Real-Time Synthesized Drum Sounds in a Virtual Environment Virtual Crime Scene Understanding Head-Mounted Display FOV in Maritime Search and Rescue Object Detection [Publisher's information] A Combination of Feedback Control and Vision-Based Deep Learning Mechanism for Guiding Self-Driving Cars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1