机械超材料人工神经网络(ANN)本构模型的建立

Arif Hussain, A. Sakhaei, M. Shafiee
{"title":"机械超材料人工神经网络(ANN)本构模型的建立","authors":"Arif Hussain, A. Sakhaei, M. Shafiee","doi":"10.1115/imece2022-94049","DOIUrl":null,"url":null,"abstract":"\n Metamaterials are a group of materials with artificial engineered structures that exhibits customized properties which are not naturally available in other materials. To accelerate the computational analysis of components made from metamaterials that helps novel engineering product design process, it is crucial to develop an accurate and robust model for these materials in macroscale. The classical approach to drive a material model in continuum level is based on development of a phenomenological model to represent the physical behaviour of the material. However, this approach has specific limitations in including the effect of tailoring design parameters in the model which is a key element for metamaterials. In this study, we have proposed an artificial neural network (ANN) constitutive model to represent the macroscale mechanical behaviour of metamaterials in three-dimensional domain. Because of its extraordinary capabilities to stimulate computational performance in identifying and constructing prospective microstructure model for mechanical metamaterials, the proposed ANN constitutive model provides intriguing advantages over conventional models. The ANN constitutive model has been trained based on strain-stress data which is obtained from microscale simulation of 3D cubic lattice structure under various loading conditions. The trained material model is then validated by measuring the accuracy of material behaviour prediction.","PeriodicalId":146276,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an Artificial Neural Network (ANN) Constitutive Model for Mechanical Metamaterials\",\"authors\":\"Arif Hussain, A. Sakhaei, M. Shafiee\",\"doi\":\"10.1115/imece2022-94049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Metamaterials are a group of materials with artificial engineered structures that exhibits customized properties which are not naturally available in other materials. To accelerate the computational analysis of components made from metamaterials that helps novel engineering product design process, it is crucial to develop an accurate and robust model for these materials in macroscale. The classical approach to drive a material model in continuum level is based on development of a phenomenological model to represent the physical behaviour of the material. However, this approach has specific limitations in including the effect of tailoring design parameters in the model which is a key element for metamaterials. In this study, we have proposed an artificial neural network (ANN) constitutive model to represent the macroscale mechanical behaviour of metamaterials in three-dimensional domain. Because of its extraordinary capabilities to stimulate computational performance in identifying and constructing prospective microstructure model for mechanical metamaterials, the proposed ANN constitutive model provides intriguing advantages over conventional models. The ANN constitutive model has been trained based on strain-stress data which is obtained from microscale simulation of 3D cubic lattice structure under various loading conditions. The trained material model is then validated by measuring the accuracy of material behaviour prediction.\",\"PeriodicalId\":146276,\"journal\":{\"name\":\"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-94049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-94049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超材料是一组具有人工工程结构的材料,具有其他材料所不具备的自定义特性。为了加速对超材料部件的计算分析,从而帮助新型工程产品的设计过程,在宏观尺度上建立一个准确而稳健的超材料模型至关重要。在连续体水平上驱动材料模型的经典方法是基于表征材料物理行为的现象学模型的发展。然而,这种方法在包括裁剪设计参数在模型中的影响方面有特定的局限性,而裁剪设计参数是超材料的关键因素。在这项研究中,我们提出了一个人工神经网络(ANN)本构模型来表示超材料在三维领域的宏观力学行为。由于其在识别和构建机械超材料的未来微观结构模型方面的非凡能力,所提出的人工神经网络本构模型比传统模型具有有趣的优势。基于三维立方晶格结构在不同载荷条件下的微尺度模拟得到的应变-应力数据,对人工神经网络的本构模型进行了训练。然后通过测量材料行为预测的准确性来验证训练的材料模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an Artificial Neural Network (ANN) Constitutive Model for Mechanical Metamaterials
Metamaterials are a group of materials with artificial engineered structures that exhibits customized properties which are not naturally available in other materials. To accelerate the computational analysis of components made from metamaterials that helps novel engineering product design process, it is crucial to develop an accurate and robust model for these materials in macroscale. The classical approach to drive a material model in continuum level is based on development of a phenomenological model to represent the physical behaviour of the material. However, this approach has specific limitations in including the effect of tailoring design parameters in the model which is a key element for metamaterials. In this study, we have proposed an artificial neural network (ANN) constitutive model to represent the macroscale mechanical behaviour of metamaterials in three-dimensional domain. Because of its extraordinary capabilities to stimulate computational performance in identifying and constructing prospective microstructure model for mechanical metamaterials, the proposed ANN constitutive model provides intriguing advantages over conventional models. The ANN constitutive model has been trained based on strain-stress data which is obtained from microscale simulation of 3D cubic lattice structure under various loading conditions. The trained material model is then validated by measuring the accuracy of material behaviour prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis of Strain Rate Dependency of the Mechanical Properties of Unidirectional CFRE Materials Thermo-Mechanical Process Modeling of Additive Friction Stir Deposition of Ti-6Al-4V Alloy Nonlinear Transient Response of Isotropic and Composite Structures With Variable Kinematic Beam and Plate Finite Elements Bolt Loosening Detection for a Steel Frame Multi-Story Structure Based on Deep Learning and Digital Image Processing Preparation of Hybrid Alkaline Cement Based on Natural Zeolite As Sustainable Building Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1