{"title":"柯尔莫哥洛夫复杂度的三个应用","authors":"Stefan Reisch, G. Schnitger","doi":"10.1109/SFCS.1982.96","DOIUrl":null,"url":null,"abstract":"Kolmogorov-CoMplexity has turned out to be a very useful tool in proving lower bounds [5], [6], [7]. Here we will give further applications of Kolmogorov-Complexity. Firstly we will greatly simplify two well-known lower bound proofs: (a) the n(n logn/loglog n) lower bound for on-line-multiplication, originally proven in [2], [4], (b) the n(n 2 /log n) lower bound for a time-space trade-off in sorting [9]. We will also improve this bound to n(N 2 loglog N/log N). Secondly we will demonstrate how to use Kolmogorov-Complexity in analysing proba-bilistic algorithms: (c) We analyse in an elementary way the routing algorithm for n-dimensional cubes given in [10]. 1. The concept of Kolmogorov-Complexity Let C be the class of one-dimensional Turing-machines with tape-alphabet {O,I,B}. Let U be an universal machine in C. For w 1 ,w 2 E{O,I}* define the Kolmogorov-Complexity [3] by: K(w 1 {W 2 }: =the length of the shortest o/ 1 s t r i ng (\" pro gram I' J p, s uc h t hat U with input pBw2 computes wI and stops. K(w): =K(wlempty string). 45 Because one program p can only generate one word w, we have Fact I : Let w 2 E{O,l}* , then i) *{wl E{O,1}*IK(w 1 IW 2) ~n} <2 n + 1 _1 i i) (Especially) there exists a string w E{O,l}n with K(wlw 2) ~n If K(wl the empty string) =n , then w i s called a random string. Two easy consequences of Fact 1 are Fact 2: (Strings with low complexity are improbable). Let w 2 E{O,l}* be fixed and determine wI E{O,l}n by tossinq a fair coin n times, then for all c Fact 3: (Random strings are locally n almost random). Let w =w 1 w 2 w 3 E{O,l} be random. Then, with w'w 2 : =w 1 w 3 ' We need the following notation. For w: =w 1 w 1 w 2 w2\"\" ,w n w n Ol ·","PeriodicalId":127919,"journal":{"name":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Three applications of Kolmogorov-complexity\",\"authors\":\"Stefan Reisch, G. Schnitger\",\"doi\":\"10.1109/SFCS.1982.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kolmogorov-CoMplexity has turned out to be a very useful tool in proving lower bounds [5], [6], [7]. Here we will give further applications of Kolmogorov-Complexity. Firstly we will greatly simplify two well-known lower bound proofs: (a) the n(n logn/loglog n) lower bound for on-line-multiplication, originally proven in [2], [4], (b) the n(n 2 /log n) lower bound for a time-space trade-off in sorting [9]. We will also improve this bound to n(N 2 loglog N/log N). Secondly we will demonstrate how to use Kolmogorov-Complexity in analysing proba-bilistic algorithms: (c) We analyse in an elementary way the routing algorithm for n-dimensional cubes given in [10]. 1. The concept of Kolmogorov-Complexity Let C be the class of one-dimensional Turing-machines with tape-alphabet {O,I,B}. Let U be an universal machine in C. For w 1 ,w 2 E{O,I}* define the Kolmogorov-Complexity [3] by: K(w 1 {W 2 }: =the length of the shortest o/ 1 s t r i ng (\\\" pro gram I' J p, s uc h t hat U with input pBw2 computes wI and stops. K(w): =K(wlempty string). 45 Because one program p can only generate one word w, we have Fact I : Let w 2 E{O,l}* , then i) *{wl E{O,1}*IK(w 1 IW 2) ~n} <2 n + 1 _1 i i) (Especially) there exists a string w E{O,l}n with K(wlw 2) ~n If K(wl the empty string) =n , then w i s called a random string. Two easy consequences of Fact 1 are Fact 2: (Strings with low complexity are improbable). Let w 2 E{O,l}* be fixed and determine wI E{O,l}n by tossinq a fair coin n times, then for all c Fact 3: (Random strings are locally n almost random). Let w =w 1 w 2 w 3 E{O,l} be random. Then, with w'w 2 : =w 1 w 3 ' We need the following notation. For w: =w 1 w 1 w 2 w2\\\"\\\" ,w n w n Ol ·\",\"PeriodicalId\":127919,\"journal\":{\"name\":\"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1982.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd Annual Symposium on Foundations of Computer Science (sfcs 1982)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1982.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
摘要
Kolmogorov-CoMplexity已经被证明是证明下界的一个非常有用的工具[5],[6],[7]。这里我们将给出kolmogorov复杂度的进一步应用。首先,我们将极大地简化两个众所周知的下界证明:(a)在线乘法的n(n logn/ logn)下界,最初在[2],[4]中得到证明,(b)排序中时空权衡的n(n 2 /log n)下界[9]。我们还将把这个界限提高到n(n2 loglog n /log n)。其次,我们将演示如何在分析概率算法中使用Kolmogorov-Complexity: (c)我们以一种基本的方式分析了[10]中给出的n维立方体的路由算法。1. 设C为带字母{O,I,B}的一维图灵机类。设U是c语言中的一个通用机,对于w1, w2 E{O,I}*定义kolmogorov复杂度[3]:K(w1 {w2}: =最短的0 / 1的长度,即I(程序I' J p),当U输入pBw2计算wI并停止时。K(w): =K(空字符串)。45由于一个程序p只能生成一个单词w,我们有了事实1:设w2e {O,l}*, then I) *{wl E{O,1}*IK(w1iw 2) ~n} < 2n + 1 _1 _1 I I)(特别地)存在一个字符串w E{O,l}n与K(wlw 2) ~n,如果K(空字符串wl) =n,则称wi为随机字符串。事实1的两个简单结果是事实2:(低复杂度的字符串是不可能的)。设w2e {O,l}*是固定的,并通过投掷n次均匀硬币来确定wI E{O,l}n,则对于所有c,事实3:(随机字符串局部n几乎是随机的)。设w =w 1 w 2 w 3 E{0, 1}是随机的。然后,用w'w 2: =w 1 w 3 ',我们需要下面的符号。对于w: = w1w1w2w2“”,w1w2w·
Kolmogorov-CoMplexity has turned out to be a very useful tool in proving lower bounds [5], [6], [7]. Here we will give further applications of Kolmogorov-Complexity. Firstly we will greatly simplify two well-known lower bound proofs: (a) the n(n logn/loglog n) lower bound for on-line-multiplication, originally proven in [2], [4], (b) the n(n 2 /log n) lower bound for a time-space trade-off in sorting [9]. We will also improve this bound to n(N 2 loglog N/log N). Secondly we will demonstrate how to use Kolmogorov-Complexity in analysing proba-bilistic algorithms: (c) We analyse in an elementary way the routing algorithm for n-dimensional cubes given in [10]. 1. The concept of Kolmogorov-Complexity Let C be the class of one-dimensional Turing-machines with tape-alphabet {O,I,B}. Let U be an universal machine in C. For w 1 ,w 2 E{O,I}* define the Kolmogorov-Complexity [3] by: K(w 1 {W 2 }: =the length of the shortest o/ 1 s t r i ng (" pro gram I' J p, s uc h t hat U with input pBw2 computes wI and stops. K(w): =K(wlempty string). 45 Because one program p can only generate one word w, we have Fact I : Let w 2 E{O,l}* , then i) *{wl E{O,1}*IK(w 1 IW 2) ~n} <2 n + 1 _1 i i) (Especially) there exists a string w E{O,l}n with K(wlw 2) ~n If K(wl the empty string) =n , then w i s called a random string. Two easy consequences of Fact 1 are Fact 2: (Strings with low complexity are improbable). Let w 2 E{O,l}* be fixed and determine wI E{O,l}n by tossinq a fair coin n times, then for all c Fact 3: (Random strings are locally n almost random). Let w =w 1 w 2 w 3 E{O,l} be random. Then, with w'w 2 : =w 1 w 3 ' We need the following notation. For w: =w 1 w 1 w 2 w2"" ,w n w n Ol ·