{"title":"等离子体在真空间隙中的膨胀:三流体流体力学模拟","authors":"E. Nefedtsev, A. Batrakov","doi":"10.1109/DEIV.2016.7748669","DOIUrl":null,"url":null,"abstract":"The paper reports on a numerical simulation of stable stage of plasma flare expansion from an explosive emission center. The calculations were made on the base of the three-fluid hydrodynamic model corrected to provide a consistent description of both electron and ion transfer in plasma and electron transfer in a vacuum gap between plasma and an anode. Concentration, flow velocity, and temperature of plasma flare components are analyzed.","PeriodicalId":296641,"journal":{"name":"2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Plasma expansion in vacuum gap: Three-fluid hydrodynamic simulation\",\"authors\":\"E. Nefedtsev, A. Batrakov\",\"doi\":\"10.1109/DEIV.2016.7748669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper reports on a numerical simulation of stable stage of plasma flare expansion from an explosive emission center. The calculations were made on the base of the three-fluid hydrodynamic model corrected to provide a consistent description of both electron and ion transfer in plasma and electron transfer in a vacuum gap between plasma and an anode. Concentration, flow velocity, and temperature of plasma flare components are analyzed.\",\"PeriodicalId\":296641,\"journal\":{\"name\":\"2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEIV.2016.7748669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEIV.2016.7748669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plasma expansion in vacuum gap: Three-fluid hydrodynamic simulation
The paper reports on a numerical simulation of stable stage of plasma flare expansion from an explosive emission center. The calculations were made on the base of the three-fluid hydrodynamic model corrected to provide a consistent description of both electron and ion transfer in plasma and electron transfer in a vacuum gap between plasma and an anode. Concentration, flow velocity, and temperature of plasma flare components are analyzed.