眼动追踪数据生成360°显著性图的四种方法的比较

Brendan David-John, Pallavi Raiturkar, O. Meur, Eakta Jain
{"title":"眼动追踪数据生成360°显著性图的四种方法的比较","authors":"Brendan David-John, Pallavi Raiturkar, O. Meur, Eakta Jain","doi":"10.1109/aivr.2018.00028","DOIUrl":null,"url":null,"abstract":"Modeling and visualization of user attention in Virtual Reality is important for many applications, such as gaze prediction, robotics, retargeting, video compression, and rendering. Several methods have been proposed to model eye tracking data as saliency maps. We benchmark the performance of four such methods for 360° images. We provide a comprehensive analysis and implementations of these methods to assist researchers and practitioners. Finally, we make recommendations based on our benchmark analyses and the ease of implementation.","PeriodicalId":371868,"journal":{"name":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Benchmark of Four Methods for Generating 360° Saliency Maps from Eye Tracking Data\",\"authors\":\"Brendan David-John, Pallavi Raiturkar, O. Meur, Eakta Jain\",\"doi\":\"10.1109/aivr.2018.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling and visualization of user attention in Virtual Reality is important for many applications, such as gaze prediction, robotics, retargeting, video compression, and rendering. Several methods have been proposed to model eye tracking data as saliency maps. We benchmark the performance of four such methods for 360° images. We provide a comprehensive analysis and implementations of these methods to assist researchers and practitioners. Finally, we make recommendations based on our benchmark analyses and the ease of implementation.\",\"PeriodicalId\":371868,\"journal\":{\"name\":\"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aivr.2018.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aivr.2018.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

虚拟现实中用户注意力的建模和可视化对于许多应用都很重要,例如凝视预测、机器人、重定向、视频压缩和渲染。已经提出了几种将眼动追踪数据建模为显著性图的方法。我们对这四种方法在360°图像上的性能进行了基准测试。我们提供了这些方法的全面分析和实现,以帮助研究人员和从业者。最后,我们根据基准分析和实现的容易程度提出建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Benchmark of Four Methods for Generating 360° Saliency Maps from Eye Tracking Data
Modeling and visualization of user attention in Virtual Reality is important for many applications, such as gaze prediction, robotics, retargeting, video compression, and rendering. Several methods have been proposed to model eye tracking data as saliency maps. We benchmark the performance of four such methods for 360° images. We provide a comprehensive analysis and implementations of these methods to assist researchers and practitioners. Finally, we make recommendations based on our benchmark analyses and the ease of implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Perceptual Evaluation of Generative Adversarial Network Real-Time Synthesized Drum Sounds in a Virtual Environment Virtual Crime Scene Understanding Head-Mounted Display FOV in Maritime Search and Rescue Object Detection [Publisher's information] A Combination of Feedback Control and Vision-Based Deep Learning Mechanism for Guiding Self-Driving Cars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1