Brendan David-John, Pallavi Raiturkar, O. Meur, Eakta Jain
{"title":"眼动追踪数据生成360°显著性图的四种方法的比较","authors":"Brendan David-John, Pallavi Raiturkar, O. Meur, Eakta Jain","doi":"10.1109/aivr.2018.00028","DOIUrl":null,"url":null,"abstract":"Modeling and visualization of user attention in Virtual Reality is important for many applications, such as gaze prediction, robotics, retargeting, video compression, and rendering. Several methods have been proposed to model eye tracking data as saliency maps. We benchmark the performance of four such methods for 360° images. We provide a comprehensive analysis and implementations of these methods to assist researchers and practitioners. Finally, we make recommendations based on our benchmark analyses and the ease of implementation.","PeriodicalId":371868,"journal":{"name":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Benchmark of Four Methods for Generating 360° Saliency Maps from Eye Tracking Data\",\"authors\":\"Brendan David-John, Pallavi Raiturkar, O. Meur, Eakta Jain\",\"doi\":\"10.1109/aivr.2018.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling and visualization of user attention in Virtual Reality is important for many applications, such as gaze prediction, robotics, retargeting, video compression, and rendering. Several methods have been proposed to model eye tracking data as saliency maps. We benchmark the performance of four such methods for 360° images. We provide a comprehensive analysis and implementations of these methods to assist researchers and practitioners. Finally, we make recommendations based on our benchmark analyses and the ease of implementation.\",\"PeriodicalId\":371868,\"journal\":{\"name\":\"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aivr.2018.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aivr.2018.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Benchmark of Four Methods for Generating 360° Saliency Maps from Eye Tracking Data
Modeling and visualization of user attention in Virtual Reality is important for many applications, such as gaze prediction, robotics, retargeting, video compression, and rendering. Several methods have been proposed to model eye tracking data as saliency maps. We benchmark the performance of four such methods for 360° images. We provide a comprehensive analysis and implementations of these methods to assist researchers and practitioners. Finally, we make recommendations based on our benchmark analyses and the ease of implementation.