生物医学成像三维CT重建的CUDA和OpenCL实现

Saoni Mukherjee, Nicholas Moore, J. Brock, M. Leeser
{"title":"生物医学成像三维CT重建的CUDA和OpenCL实现","authors":"Saoni Mukherjee, Nicholas Moore, J. Brock, M. Leeser","doi":"10.1109/HPEC.2012.6408674","DOIUrl":null,"url":null,"abstract":"Biomedical image reconstruction applications with large datasets can benefit from acceleration. Graphic Processing Units(GPUs) are particularly useful in this context as they can produce high fidelity images rapidly. An image algorithm to reconstruct conebeam computed tomography(CT) using two dimensional projections is implemented using GPUs. The implementation takes slices of the target, weighs the projection data and then filters the weighted data to backproject the data and create the final three dimensional construction. This is implemented on two types of hardware: CPU and a heterogeneous system combining CPU and GPU. The CPU codes in C and MATLAB are compared with the heterogeneous versions written in CUDA-C and OpenCL. The relative performance is tested and evaluated on a mathematical phantom as well as on mouse data.","PeriodicalId":193020,"journal":{"name":"2012 IEEE Conference on High Performance Extreme Computing","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"CUDA and OpenCL implementations of 3D CT reconstruction for biomedical imaging\",\"authors\":\"Saoni Mukherjee, Nicholas Moore, J. Brock, M. Leeser\",\"doi\":\"10.1109/HPEC.2012.6408674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomedical image reconstruction applications with large datasets can benefit from acceleration. Graphic Processing Units(GPUs) are particularly useful in this context as they can produce high fidelity images rapidly. An image algorithm to reconstruct conebeam computed tomography(CT) using two dimensional projections is implemented using GPUs. The implementation takes slices of the target, weighs the projection data and then filters the weighted data to backproject the data and create the final three dimensional construction. This is implemented on two types of hardware: CPU and a heterogeneous system combining CPU and GPU. The CPU codes in C and MATLAB are compared with the heterogeneous versions written in CUDA-C and OpenCL. The relative performance is tested and evaluated on a mathematical phantom as well as on mouse data.\",\"PeriodicalId\":193020,\"journal\":{\"name\":\"2012 IEEE Conference on High Performance Extreme Computing\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Conference on High Performance Extreme Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2012.6408674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on High Performance Extreme Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2012.6408674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

具有大型数据集的生物医学图像重建应用可以从加速中受益。图形处理单元(gpu)在这种情况下特别有用,因为它们可以快速生成高保真图像。利用图形处理器实现了一种利用二维投影重建圆锥束计算机断层(CT)图像的算法。该实现对目标进行切片,对投影数据进行加权,然后对加权数据进行过滤,对数据进行反向投影,生成最终的三维结构。这是在两种硬件上实现的:CPU和CPU和GPU相结合的异构系统。将C语言和MATLAB语言编写的CPU代码与CUDA-C语言和OpenCL语言编写的异构版本进行了比较。在数学模型和鼠标数据上测试和评估了相关性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CUDA and OpenCL implementations of 3D CT reconstruction for biomedical imaging
Biomedical image reconstruction applications with large datasets can benefit from acceleration. Graphic Processing Units(GPUs) are particularly useful in this context as they can produce high fidelity images rapidly. An image algorithm to reconstruct conebeam computed tomography(CT) using two dimensional projections is implemented using GPUs. The implementation takes slices of the target, weighs the projection data and then filters the weighted data to backproject the data and create the final three dimensional construction. This is implemented on two types of hardware: CPU and a heterogeneous system combining CPU and GPU. The CPU codes in C and MATLAB are compared with the heterogeneous versions written in CUDA-C and OpenCL. The relative performance is tested and evaluated on a mathematical phantom as well as on mouse data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Aperture Radar on low power multi-core Digital Signal Processor Accelerating fully homomorphic encryption using GPU Parallel search of k-nearest neighbors with synchronous operations An update on SIPHER (Scalable Implementation of Primitives for Homomorphic EncRyption) — FPGA implementation using Simulink High locality and increased intra-node parallelism for solving finite element models on GPUs by novel element-by-element implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1