基因表达分类器的一些比较

Shinuk Kim, M. Kon, Hyowon Lee
{"title":"基因表达分类器的一些比较","authors":"Shinuk Kim, M. Kon, Hyowon Lee","doi":"10.1109/BIBM.2016.7822783","DOIUrl":null,"url":null,"abstract":"Numerous computational studies related to cancer have been published, but increasing prediction accuracy of molecular datasets remains a challenge. Here we present a comparison of prediction based on a feature selection method combined with machine learning, for microRNA-Seq (miRNA-Seq) and mRNA-Seq data. We have tested three different approaches: support vector machine, decision tree and k nearest neighbors, under two different feature selection methods: fisher feature selection and infinite feature selection.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some comparisons of gene expression classifiers\",\"authors\":\"Shinuk Kim, M. Kon, Hyowon Lee\",\"doi\":\"10.1109/BIBM.2016.7822783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous computational studies related to cancer have been published, but increasing prediction accuracy of molecular datasets remains a challenge. Here we present a comparison of prediction based on a feature selection method combined with machine learning, for microRNA-Seq (miRNA-Seq) and mRNA-Seq data. We have tested three different approaches: support vector machine, decision tree and k nearest neighbors, under two different feature selection methods: fisher feature selection and infinite feature selection.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多与癌症相关的计算研究已经发表,但提高分子数据集的预测准确性仍然是一个挑战。在这里,我们对microRNA-Seq (miRNA-Seq)和mRNA-Seq数据进行了基于特征选择方法和机器学习相结合的预测比较。我们在两种不同的特征选择方法:fisher特征选择和无限特征选择下测试了三种不同的方法:支持向量机、决策树和k近邻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Some comparisons of gene expression classifiers
Numerous computational studies related to cancer have been published, but increasing prediction accuracy of molecular datasets remains a challenge. Here we present a comparison of prediction based on a feature selection method combined with machine learning, for microRNA-Seq (miRNA-Seq) and mRNA-Seq data. We have tested three different approaches: support vector machine, decision tree and k nearest neighbors, under two different feature selection methods: fisher feature selection and infinite feature selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of high performance, grid and cloud computing in high-throughput sequencing A novel algorithm for identifying essential proteins by integrating subcellular localization CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features Inferring Social Influence of anti-Tobacco mass media campaigns Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1