基于亚状态检测的语音识别置信度评分

A. Punnoose
{"title":"基于亚状态检测的语音识别置信度评分","authors":"A. Punnoose","doi":"10.1109/NCC48643.2020.9056075","DOIUrl":null,"url":null,"abstract":"This paper discusses an approach for confidence scoring at the phoneme level. Various features derived from multi layer perceptron (MLP) posteriors that indicates the strength of a phoneme detection are introduced. The capability of these features to discriminate between true positive and false positive phoneme detection is demonstrated. Appropriate distributions are fit on these features. These distributions are combined to derive the posterior odds ratio, which signals the confidence of a phoneme detection. Finally, simple thresholding on the posterior odds ratio is used to classify a detected phoneme as true/false positive. Relevant real world datasets are used to benchmark the proposed approach.","PeriodicalId":183772,"journal":{"name":"2020 National Conference on Communications (NCC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substate Detection Based Confidence Scoring in Speech Recognition\",\"authors\":\"A. Punnoose\",\"doi\":\"10.1109/NCC48643.2020.9056075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses an approach for confidence scoring at the phoneme level. Various features derived from multi layer perceptron (MLP) posteriors that indicates the strength of a phoneme detection are introduced. The capability of these features to discriminate between true positive and false positive phoneme detection is demonstrated. Appropriate distributions are fit on these features. These distributions are combined to derive the posterior odds ratio, which signals the confidence of a phoneme detection. Finally, simple thresholding on the posterior odds ratio is used to classify a detected phoneme as true/false positive. Relevant real world datasets are used to benchmark the proposed approach.\",\"PeriodicalId\":183772,\"journal\":{\"name\":\"2020 National Conference on Communications (NCC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC48643.2020.9056075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC48643.2020.9056075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一种在音素水平上进行自信评分的方法。介绍了多层感知器(MLP)后验的各种特征,这些特征表明音素检测的强度。证明了这些特征区分真阳性和假阳性音素检测的能力。适当的发行版适合于这些特性。这些分布结合起来得出后验优势比,这表明音素检测的置信度。最后,使用后验优势比的简单阈值将检测到的音素分类为真/假阳性。使用相关的真实世界数据集对所提出的方法进行基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Substate Detection Based Confidence Scoring in Speech Recognition
This paper discusses an approach for confidence scoring at the phoneme level. Various features derived from multi layer perceptron (MLP) posteriors that indicates the strength of a phoneme detection are introduced. The capability of these features to discriminate between true positive and false positive phoneme detection is demonstrated. Appropriate distributions are fit on these features. These distributions are combined to derive the posterior odds ratio, which signals the confidence of a phoneme detection. Finally, simple thresholding on the posterior odds ratio is used to classify a detected phoneme as true/false positive. Relevant real world datasets are used to benchmark the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Two-Way Optimization Framework for Clustering of Images using Weighted Tensor Nuclear Norm Approximation Blind Channel Coding Identification of Convolutional encoder and Reed-Solomon encoder using Neural Networks Classification of Autism in Young Children by Phase Angle Clustering in Magnetoencephalogram Signals A Fusion-Based Approach to Identify the Phases of the Sit-to-Stand Test in Older People STPM Based Performance Analysis of Finite-Sized Differential Serial FSO Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1