基于期望最大化主成分分析和支持向量机方法的非逆变降压型DC-DC电源变换器数据驱动故障分类

Yichuan Fu, Zhiwei Gao, Haimeng Wu, Xiuxia Yin, A. Zhang
{"title":"基于期望最大化主成分分析和支持向量机方法的非逆变降压型DC-DC电源变换器数据驱动故障分类","authors":"Yichuan Fu, Zhiwei Gao, Haimeng Wu, Xiuxia Yin, A. Zhang","doi":"10.1109/peas53589.2021.9628697","DOIUrl":null,"url":null,"abstract":"Data-driven fault classification for power converter systems has been taking more into considerations in power electronics, machine drives, and electric vehicles. It is challenging to classify the different topologies of faults in the real-time monitoring control systems. In this paper, a data-driven and supervised machine learning-based fault classification technique is adopted by combining and consolidating with Expectation Maximisation Principal Component Analysis (EMPCA) and Support Vector Machine (SVM) to substantiate the availability of fault classification. The proposed methodology is applied to the non-inverting Buck–Boost DC–DC power converter systems subjected to the incipient fault and serious fault, respectively. Finally, the feasibility of the approach is validated by intensive simulations and comparison studies.","PeriodicalId":268264,"journal":{"name":"2021 IEEE 1st International Power Electronics and Application Symposium (PEAS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Data-Driven Fault Classification for Non-Inverting Buck–Boost DC–DC Power Converters Based on Expectation Maximisation Principal Component Analysis and Support Vector Machine Approaches\",\"authors\":\"Yichuan Fu, Zhiwei Gao, Haimeng Wu, Xiuxia Yin, A. Zhang\",\"doi\":\"10.1109/peas53589.2021.9628697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-driven fault classification for power converter systems has been taking more into considerations in power electronics, machine drives, and electric vehicles. It is challenging to classify the different topologies of faults in the real-time monitoring control systems. In this paper, a data-driven and supervised machine learning-based fault classification technique is adopted by combining and consolidating with Expectation Maximisation Principal Component Analysis (EMPCA) and Support Vector Machine (SVM) to substantiate the availability of fault classification. The proposed methodology is applied to the non-inverting Buck–Boost DC–DC power converter systems subjected to the incipient fault and serious fault, respectively. Finally, the feasibility of the approach is validated by intensive simulations and comparison studies.\",\"PeriodicalId\":268264,\"journal\":{\"name\":\"2021 IEEE 1st International Power Electronics and Application Symposium (PEAS)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 1st International Power Electronics and Application Symposium (PEAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/peas53589.2021.9628697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 1st International Power Electronics and Application Symposium (PEAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/peas53589.2021.9628697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

数据驱动的电力变换器故障分类在电力电子、机械传动和电动汽车等领域受到越来越多的关注。在实时监测控制系统中,如何对故障的不同拓扑进行分类是一个难题。本文采用基于数据驱动和监督机器学习的故障分类技术,将期望最大化主成分分析(EMPCA)和支持向量机(SVM)相结合和巩固,以验证故障分类的可用性。将所提出的方法分别应用于具有早期故障和严重故障的非逆变Buck-Boost DC-DC功率变换器系统。最后,通过大量的仿真和对比研究验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Fault Classification for Non-Inverting Buck–Boost DC–DC Power Converters Based on Expectation Maximisation Principal Component Analysis and Support Vector Machine Approaches
Data-driven fault classification for power converter systems has been taking more into considerations in power electronics, machine drives, and electric vehicles. It is challenging to classify the different topologies of faults in the real-time monitoring control systems. In this paper, a data-driven and supervised machine learning-based fault classification technique is adopted by combining and consolidating with Expectation Maximisation Principal Component Analysis (EMPCA) and Support Vector Machine (SVM) to substantiate the availability of fault classification. The proposed methodology is applied to the non-inverting Buck–Boost DC–DC power converter systems subjected to the incipient fault and serious fault, respectively. Finally, the feasibility of the approach is validated by intensive simulations and comparison studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Online Loop Gain Monitors for Power Converters in Microgrids A New Integrated Topology Design of Auxiliary Power Supply for Metro Circulating Current Injection Method for the Modular Multilevel Converter High-Frequency DC/DC Converter Based on Differential Load-Independent Class E Inverter Modeling and Parameter Identification of Supercapacitor Battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1