gan的单平面CT重建

Justus Schock, Yu-Chia Lan, D. Truhn, M. Kopaczka, Stefan Conrad, S. Nebelung, D. Merhof
{"title":"gan的单平面CT重建","authors":"Justus Schock, Yu-Chia Lan, D. Truhn, M. Kopaczka, Stefan Conrad, S. Nebelung, D. Merhof","doi":"10.1109/IPTA54936.2022.9784126","DOIUrl":null,"url":null,"abstract":"Reconstructing Computed Tomography images (CT) from radiographs currently requires biplanar radiographs for accurate CT reconstruction due to the complementary information contained in the individual views. However, in many cases biplanar information is not available. In this work, we therefore propose a KNN and a PCA-based approach using biplanar radiographs only at the training stage while performing the final inference using only a single anterior-posterior radiograph, thereby increasing the applicability and usability of the model. The methods are quantitatively validated on a multiview database achieving 81% PSNR of biplanar inference and also qualitatively on a dataset of radiographs with no corresponding CT scans.","PeriodicalId":381729,"journal":{"name":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monoplanar CT Reconstruction with GANs\",\"authors\":\"Justus Schock, Yu-Chia Lan, D. Truhn, M. Kopaczka, Stefan Conrad, S. Nebelung, D. Merhof\",\"doi\":\"10.1109/IPTA54936.2022.9784126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconstructing Computed Tomography images (CT) from radiographs currently requires biplanar radiographs for accurate CT reconstruction due to the complementary information contained in the individual views. However, in many cases biplanar information is not available. In this work, we therefore propose a KNN and a PCA-based approach using biplanar radiographs only at the training stage while performing the final inference using only a single anterior-posterior radiograph, thereby increasing the applicability and usability of the model. The methods are quantitatively validated on a multiview database achieving 81% PSNR of biplanar inference and also qualitatively on a dataset of radiographs with no corresponding CT scans.\",\"PeriodicalId\":381729,\"journal\":{\"name\":\"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA54936.2022.9784126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA54936.2022.9784126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从x线片重建计算机断层扫描图像(CT)目前需要双平面x线片进行精确的CT重建,因为单个视图中包含互补信息。然而,在许多情况下,双平面信息是不可用的。因此,在这项工作中,我们提出了一种KNN和基于pca的方法,仅在训练阶段使用双平面x线片,同时仅使用单个前后x线片进行最终推断,从而提高了模型的适用性和可用性。这些方法在多视图数据库上进行了定量验证,双平面推断的PSNR达到81%,在没有相应CT扫描的x线片数据集上也进行了定性验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monoplanar CT Reconstruction with GANs
Reconstructing Computed Tomography images (CT) from radiographs currently requires biplanar radiographs for accurate CT reconstruction due to the complementary information contained in the individual views. However, in many cases biplanar information is not available. In this work, we therefore propose a KNN and a PCA-based approach using biplanar radiographs only at the training stage while performing the final inference using only a single anterior-posterior radiograph, thereby increasing the applicability and usability of the model. The methods are quantitatively validated on a multiview database achieving 81% PSNR of biplanar inference and also qualitatively on a dataset of radiographs with no corresponding CT scans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Special Session 3: Visual Computing in Digital Humanities Complex Texture Features Learned by Applying Randomized Neural Network on Graphs AAEGAN Optimization by Purposeful Noise Injection for the Generation of Bright-Field Brain Organoid Images Towards Fast and Accurate Intimate Contact Recognition through Video Analysis Draco-Based Selective Crypto-Compression Method of 3D objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1