预测软件开发任务的代码上下文模型

Zhiyuan Wan, G. Murphy, Xin Xia
{"title":"预测软件开发任务的代码上下文模型","authors":"Zhiyuan Wan, G. Murphy, Xin Xia","doi":"10.1145/3324884.3416544","DOIUrl":null,"url":null,"abstract":"Code context models consist of source code elements and their relations relevant to a development task. Prior research showed that making code context models explicit in software tools can benefit software development practices, e.g., code navigation and searching. However, little focus has been put on how to proactively form code context models. In this paper, we explore the proactive formation of code context models based on the topological patterns of code elements from interaction histories for a project. Specifically, we first learn abstract topological patterns based on the stereotype roles of code elements, rather than on specific code elements; we then leverage the learned patterns to predict the code context models for a given task by graph pattern matching. To determine the effectiveness of this approach, we applied the approach to interaction histories stored for the Eclipse Mylyn open source project. We found that our approach achieves maximum F-measures of 0.67, 0.33 and 0.21 for 1-step, 2-step and 3-step predictions, respectively. The most similar approach to ours is Suade, which supports 1-step prediction only. In comparison to this existing work, our approach predicts code context models with significantly higher F-measure (0.57 over 0.23 on average). The results demonstrate the value of integrating historical and structural approaches to form more accurate code context models.CCS CONCEPTS • Software and its engineering → Development frameworks and environments; • Human-centered computing → Human computer interaction (HCI).","PeriodicalId":106337,"journal":{"name":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Code Context Models for Software Development Tasks\",\"authors\":\"Zhiyuan Wan, G. Murphy, Xin Xia\",\"doi\":\"10.1145/3324884.3416544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Code context models consist of source code elements and their relations relevant to a development task. Prior research showed that making code context models explicit in software tools can benefit software development practices, e.g., code navigation and searching. However, little focus has been put on how to proactively form code context models. In this paper, we explore the proactive formation of code context models based on the topological patterns of code elements from interaction histories for a project. Specifically, we first learn abstract topological patterns based on the stereotype roles of code elements, rather than on specific code elements; we then leverage the learned patterns to predict the code context models for a given task by graph pattern matching. To determine the effectiveness of this approach, we applied the approach to interaction histories stored for the Eclipse Mylyn open source project. We found that our approach achieves maximum F-measures of 0.67, 0.33 and 0.21 for 1-step, 2-step and 3-step predictions, respectively. The most similar approach to ours is Suade, which supports 1-step prediction only. In comparison to this existing work, our approach predicts code context models with significantly higher F-measure (0.57 over 0.23 on average). The results demonstrate the value of integrating historical and structural approaches to form more accurate code context models.CCS CONCEPTS • Software and its engineering → Development frameworks and environments; • Human-centered computing → Human computer interaction (HCI).\",\"PeriodicalId\":106337,\"journal\":{\"name\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3324884.3416544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3416544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

代码上下文模型由源代码元素及其与开发任务相关的关系组成。先前的研究表明,在软件工具中明确代码上下文模型可以使软件开发实践受益,例如,代码导航和搜索。然而,很少有人关注如何主动形成代码上下文模型。在本文中,我们探索了基于项目交互历史中代码元素的拓扑模式的代码上下文模型的主动形成。具体来说,我们首先学习基于代码元素的原型角色的抽象拓扑模式,而不是基于特定的代码元素;然后,我们利用学习到的模式,通过图形模式匹配来预测给定任务的代码上下文模型。为了确定此方法的有效性,我们将该方法应用于为Eclipse Mylyn开放源代码项目存储的交互历史记录。我们发现,对于一步、两步和三步预测,我们的方法分别达到了0.67、0.33和0.21的最大f测量值。与我们最相似的方法是Suade,它只支持一步预测。与现有的工作相比,我们的方法预测代码上下文模型的f值明显更高(平均为0.57比0.23)。结果证明了将历史方法和结构方法集成以形成更准确的代码上下文模型的价值。•软件及其工程→开发框架和环境;•以人为中心的计算→人机交互(HCI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting Code Context Models for Software Development Tasks
Code context models consist of source code elements and their relations relevant to a development task. Prior research showed that making code context models explicit in software tools can benefit software development practices, e.g., code navigation and searching. However, little focus has been put on how to proactively form code context models. In this paper, we explore the proactive formation of code context models based on the topological patterns of code elements from interaction histories for a project. Specifically, we first learn abstract topological patterns based on the stereotype roles of code elements, rather than on specific code elements; we then leverage the learned patterns to predict the code context models for a given task by graph pattern matching. To determine the effectiveness of this approach, we applied the approach to interaction histories stored for the Eclipse Mylyn open source project. We found that our approach achieves maximum F-measures of 0.67, 0.33 and 0.21 for 1-step, 2-step and 3-step predictions, respectively. The most similar approach to ours is Suade, which supports 1-step prediction only. In comparison to this existing work, our approach predicts code context models with significantly higher F-measure (0.57 over 0.23 on average). The results demonstrate the value of integrating historical and structural approaches to form more accurate code context models.CCS CONCEPTS • Software and its engineering → Development frameworks and environments; • Human-centered computing → Human computer interaction (HCI).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Generating Thread-Safe Classes Automatically Anti-patterns for Java Automated Program Repair Tools Automating Just-In-Time Comment Updating Synthesizing Smart Solving Strategy for Symbolic Execution Identifying and Describing Information Seeking Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1