Pareto多目标优化的k -随机对手竞争协同进化

Tse Guan Tan, J. Teo, H. Lau
{"title":"Pareto多目标优化的k -随机对手竞争协同进化","authors":"Tse Guan Tan, J. Teo, H. Lau","doi":"10.1109/ICNC.2007.309","DOIUrl":null,"url":null,"abstract":"In this paper, our objective is to conduct comprehensive tests for competitive coevolution using an evolutionary multiobjective algorithm for 3 dimensional problems. This competitive coevolution will be implemented with k-random opponents strategy. A new algorithm which integrates competitive coevolution (CE) and the strength Pareto evolutionary algorithm 2 (SPEA2) is proposed to achieve this objective. The resulting algorithm is referred to as the strength Pareto evolutionary algorithm 2 with competitive coevolution (SPEA2-CE). The performance between SPEA2-CE is compared against SPEA2 to solve problems with each having three objectives using DTLZ suite of test problems. In general, the results show that the SPEA2-CE with k- random opponents performed well for the generational distance and coverage but performed less favorably for spacing.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Competitive Coevolution with K-Random Opponents for Pareto Multiobjective Optimization\",\"authors\":\"Tse Guan Tan, J. Teo, H. Lau\",\"doi\":\"10.1109/ICNC.2007.309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, our objective is to conduct comprehensive tests for competitive coevolution using an evolutionary multiobjective algorithm for 3 dimensional problems. This competitive coevolution will be implemented with k-random opponents strategy. A new algorithm which integrates competitive coevolution (CE) and the strength Pareto evolutionary algorithm 2 (SPEA2) is proposed to achieve this objective. The resulting algorithm is referred to as the strength Pareto evolutionary algorithm 2 with competitive coevolution (SPEA2-CE). The performance between SPEA2-CE is compared against SPEA2 to solve problems with each having three objectives using DTLZ suite of test problems. In general, the results show that the SPEA2-CE with k- random opponents performed well for the generational distance and coverage but performed less favorably for spacing.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们的目标是使用一种进化多目标算法对三维问题进行竞争协同进化的全面测试。这种竞争性协同进化将通过k随机对手策略来实现。为了实现这一目标,提出了一种将竞争协同进化算法(CE)与强度Pareto进化算法2 (SPEA2)相结合的新算法。所得到的算法被称为竞争协同进化的强度Pareto进化算法2 (SPEA2-CE)。将SPEA2- ce之间的性能与SPEA2进行比较,以使用DTLZ测试问题套件解决每个具有三个目标的问题。结果表明,具有k随机对手的SPEA2-CE在代距和代覆盖率方面表现良好,但在代距和代距方面表现不佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Competitive Coevolution with K-Random Opponents for Pareto Multiobjective Optimization
In this paper, our objective is to conduct comprehensive tests for competitive coevolution using an evolutionary multiobjective algorithm for 3 dimensional problems. This competitive coevolution will be implemented with k-random opponents strategy. A new algorithm which integrates competitive coevolution (CE) and the strength Pareto evolutionary algorithm 2 (SPEA2) is proposed to achieve this objective. The resulting algorithm is referred to as the strength Pareto evolutionary algorithm 2 with competitive coevolution (SPEA2-CE). The performance between SPEA2-CE is compared against SPEA2 to solve problems with each having three objectives using DTLZ suite of test problems. In general, the results show that the SPEA2-CE with k- random opponents performed well for the generational distance and coverage but performed less favorably for spacing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1