fpga中低延迟100gb /s流数据包解析器的p4兼容高级合成

Jeferson Santiago da Silva, F. Boyer, J. Langlois
{"title":"fpga中低延迟100gb /s流数据包解析器的p4兼容高级合成","authors":"Jeferson Santiago da Silva, F. Boyer, J. Langlois","doi":"10.1145/3174243.3174270","DOIUrl":null,"url":null,"abstract":"Packet parsing is a key step in SDN-aware devices. Packet parsers in SDN networks need to be both reconfigurable and fast, to support the evolving network protocols and the increasing multi-gigabit data rates. The combination of packet processing languages with FPGAs seems to be the perfect match for these requirements. In this work, we develop an open-source FPGA-based configurable architecture for arbitrary packet parsing to be used in SDN networks. We generate low latency and high-speed streaming packet parsers directly from a packet processing program. Our architecture is pipelined and entirely modeled using templated \\textttC++ classes. The pipeline layout is derived from a parser graph that corresponds to a P4 code after a series of graph transformation rounds. The RTL code is generated from the \\textttC++ description using Xilinx Vivado HLS and synthesized with Xilinx Vivado. Our architecture achieves a \\SI100 \\giga\\bit/\\second data rate in a Xilinx Virtex-7 FPGA while reducing the latency by 45% and the LUT usage by 40% compared to the state-of-the-art.","PeriodicalId":164936,"journal":{"name":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"P4-Compatible High-Level Synthesis of Low Latency 100 Gb/s Streaming Packet Parsers in FPGAs\",\"authors\":\"Jeferson Santiago da Silva, F. Boyer, J. Langlois\",\"doi\":\"10.1145/3174243.3174270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Packet parsing is a key step in SDN-aware devices. Packet parsers in SDN networks need to be both reconfigurable and fast, to support the evolving network protocols and the increasing multi-gigabit data rates. The combination of packet processing languages with FPGAs seems to be the perfect match for these requirements. In this work, we develop an open-source FPGA-based configurable architecture for arbitrary packet parsing to be used in SDN networks. We generate low latency and high-speed streaming packet parsers directly from a packet processing program. Our architecture is pipelined and entirely modeled using templated \\\\textttC++ classes. The pipeline layout is derived from a parser graph that corresponds to a P4 code after a series of graph transformation rounds. The RTL code is generated from the \\\\textttC++ description using Xilinx Vivado HLS and synthesized with Xilinx Vivado. Our architecture achieves a \\\\SI100 \\\\giga\\\\bit/\\\\second data rate in a Xilinx Virtex-7 FPGA while reducing the latency by 45% and the LUT usage by 40% compared to the state-of-the-art.\",\"PeriodicalId\":164936,\"journal\":{\"name\":\"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3174243.3174270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3174243.3174270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

数据包解析是sdn感知设备的关键步骤。为了支持不断发展的网络协议和不断增长的千兆位数据速率,SDN网络中的数据包解析器需要既可重构又快速。包处理语言与fpga的结合似乎是这些需求的完美匹配。在这项工作中,我们开发了一个开源的基于fpga的可配置架构,用于SDN网络中的任意数据包解析。我们直接从数据包处理程序生成低延迟和高速流数据包解析器。我们的体系结构是流水线的,并完全使用模板化的textt++类建模。管道布局是从一个解析器图派生出来的,该解析器图在经过一系列图转换之后对应于一个P4代码。RTL代码是使用Xilinx Vivado HLS从\ textttc++描述生成的,并使用Xilinx Vivado进行合成。我们的架构在Xilinx Virtex-7 FPGA中实现了\SI100 \千兆比特/秒的数据速率,同时与最先进的技术相比,延迟降低了45%,LUT使用率降低了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P4-Compatible High-Level Synthesis of Low Latency 100 Gb/s Streaming Packet Parsers in FPGAs
Packet parsing is a key step in SDN-aware devices. Packet parsers in SDN networks need to be both reconfigurable and fast, to support the evolving network protocols and the increasing multi-gigabit data rates. The combination of packet processing languages with FPGAs seems to be the perfect match for these requirements. In this work, we develop an open-source FPGA-based configurable architecture for arbitrary packet parsing to be used in SDN networks. We generate low latency and high-speed streaming packet parsers directly from a packet processing program. Our architecture is pipelined and entirely modeled using templated \textttC++ classes. The pipeline layout is derived from a parser graph that corresponds to a P4 code after a series of graph transformation rounds. The RTL code is generated from the \textttC++ description using Xilinx Vivado HLS and synthesized with Xilinx Vivado. Our architecture achieves a \SI100 \giga\bit/\second data rate in a Xilinx Virtex-7 FPGA while reducing the latency by 45% and the LUT usage by 40% compared to the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Architecture and Circuit Design of an All-Spintronic FPGA Session details: Session 6: High Level Synthesis 2 A FPGA Friendly Approximate Computing Framework with Hybrid Neural Networks: (Abstract Only) Software/Hardware Co-design for Multichannel Scheduling in IEEE 802.11p MLME: (Abstract Only) Session details: Special Session: Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1