{"title":"遍历褪色脏纸通道的点阵策略","authors":"Ahmed Hindy, Aria Nosratinia","doi":"10.1109/ISIT.2016.7541804","DOIUrl":null,"url":null,"abstract":"A modified version of Costa's dirty paper channel is studied, in which both the input signal and the state experience stationary and ergodic time-varying fading. The fading coefficients are assumed to be known exclusively at the receiver. An inner bound of the achievable rates using lattice codes is derived and compared to an outer bound of the capacity. For a wide range of fading distributions, the gap to capacity is within a constant value that does not depend on either the power of the input signal or the state. The results presented in this paper are applied to a class of ergodic fading broadcast channels with receive channel state information, where the achievable rate region is shown to be close to capacity under certain configurations.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lattice strategies for the ergodic fading dirty paper channel\",\"authors\":\"Ahmed Hindy, Aria Nosratinia\",\"doi\":\"10.1109/ISIT.2016.7541804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modified version of Costa's dirty paper channel is studied, in which both the input signal and the state experience stationary and ergodic time-varying fading. The fading coefficients are assumed to be known exclusively at the receiver. An inner bound of the achievable rates using lattice codes is derived and compared to an outer bound of the capacity. For a wide range of fading distributions, the gap to capacity is within a constant value that does not depend on either the power of the input signal or the state. The results presented in this paper are applied to a class of ergodic fading broadcast channels with receive channel state information, where the achievable rate region is shown to be close to capacity under certain configurations.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lattice strategies for the ergodic fading dirty paper channel
A modified version of Costa's dirty paper channel is studied, in which both the input signal and the state experience stationary and ergodic time-varying fading. The fading coefficients are assumed to be known exclusively at the receiver. An inner bound of the achievable rates using lattice codes is derived and compared to an outer bound of the capacity. For a wide range of fading distributions, the gap to capacity is within a constant value that does not depend on either the power of the input signal or the state. The results presented in this paper are applied to a class of ergodic fading broadcast channels with receive channel state information, where the achievable rate region is shown to be close to capacity under certain configurations.