尼泊尔共产党。Net:一个基于。Net的彩色Petri网模型自动提取的源代码

Aghyad Albaghajati, Moataz A. Ahmed
{"title":"尼泊尔共产党。Net:一个基于。Net的彩色Petri网模型自动提取的源代码","authors":"Aghyad Albaghajati, Moataz A. Ahmed","doi":"10.1109/CAIDA51941.2021.9425201","DOIUrl":null,"url":null,"abstract":"Multithreaded and parallel software systems are notably difficult to test due to their nature of non-determinism. Researchers from the literature suggested formal modeling and model checking to verify such systems. However, manual construction of models and abstractions of such systems could be time consuming, tiresome, and error prone. Automated models extraction approaches are necessary. In this study, we propose an approach to automatically extract Colored Petri Nets model from source code. Moreover, we establish a set of mapping rules to translate control flow graphs to Colored Petri Nets.","PeriodicalId":272573,"journal":{"name":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CPN.Net: An Automated Colored Petri Nets Model Extraction From .Net Based Source Code\",\"authors\":\"Aghyad Albaghajati, Moataz A. Ahmed\",\"doi\":\"10.1109/CAIDA51941.2021.9425201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multithreaded and parallel software systems are notably difficult to test due to their nature of non-determinism. Researchers from the literature suggested formal modeling and model checking to verify such systems. However, manual construction of models and abstractions of such systems could be time consuming, tiresome, and error prone. Automated models extraction approaches are necessary. In this study, we propose an approach to automatically extract Colored Petri Nets model from source code. Moreover, we establish a set of mapping rules to translate control flow graphs to Colored Petri Nets.\",\"PeriodicalId\":272573,\"journal\":{\"name\":\"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIDA51941.2021.9425201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIDA51941.2021.9425201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多线程和并行软件系统由于其非确定性的性质而非常难以测试。研究人员从文献中建议正式建模和模型检查来验证这样的系统。然而,这种系统的模型和抽象的手工构建可能是耗时的,令人厌烦的,并且容易出错。自动模型提取方法是必要的。在本研究中,我们提出了一种从源代码中自动提取有色Petri网模型的方法。此外,我们还建立了一套映射规则,将控制流图转换为彩色Petri网。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CPN.Net: An Automated Colored Petri Nets Model Extraction From .Net Based Source Code
Multithreaded and parallel software systems are notably difficult to test due to their nature of non-determinism. Researchers from the literature suggested formal modeling and model checking to verify such systems. However, manual construction of models and abstractions of such systems could be time consuming, tiresome, and error prone. Automated models extraction approaches are necessary. In this study, we propose an approach to automatically extract Colored Petri Nets model from source code. Moreover, we establish a set of mapping rules to translate control flow graphs to Colored Petri Nets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melanoma Skin Lesions Classification using Deep Convolutional Neural Network with Transfer Learning A Comparison of Two-Stage Classifier Algorithm with Ensemble Techniques On Detection of Diabetic Retinopathy Predicting Congestive Heart Failure Risk Factors in King Abdulaziz Medical City A Machine Learning Approach Robotics: Biological Hypercomputation and Bio-Inspired Swarms Intelligence AI Support Marketing: Understanding the Customer Journey towards the Business Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1