RAJA:大规模科学应用的便携性能

D. Beckingsale, T. Scogland, J. Burmark, R. Hornung, Holger E. Jones, W. Killian, A. Kunen, Olga Pearce, P. Robinson, B. Ryujin
{"title":"RAJA:大规模科学应用的便携性能","authors":"D. Beckingsale, T. Scogland, J. Burmark, R. Hornung, Holger E. Jones, W. Killian, A. Kunen, Olga Pearce, P. Robinson, B. Ryujin","doi":"10.1109/P3HPC49587.2019.00012","DOIUrl":null,"url":null,"abstract":"Modern high-performance computing systems are diverse, with hardware designs ranging from homogeneous multi- core CPUs to GPU or FPGA accelerated systems. Achieving desir- able application performance often requires choosing a program- ming model best suited to a particular platform. For large codes used daily in production that are under continual development, architecture-specific ports are untenable. Maintainability re- quires single-source application code that is performance portable across a range of architectures and programming models. In this paper we describe RAJA, a portability layer that enables C++ applications to leverage various programming models, and thus architectures, with a single-source codebase. We describe preliminary results using RAJA in three large production codes at Lawrence Livermore National Laboratory, observing 17×, 13× and 12× speedup on GPU-only over CPU- only nodes with single-source application code in each case.","PeriodicalId":377385,"journal":{"name":"2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":"{\"title\":\"RAJA: Portable Performance for Large-Scale Scientific Applications\",\"authors\":\"D. Beckingsale, T. Scogland, J. Burmark, R. Hornung, Holger E. Jones, W. Killian, A. Kunen, Olga Pearce, P. Robinson, B. Ryujin\",\"doi\":\"10.1109/P3HPC49587.2019.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern high-performance computing systems are diverse, with hardware designs ranging from homogeneous multi- core CPUs to GPU or FPGA accelerated systems. Achieving desir- able application performance often requires choosing a program- ming model best suited to a particular platform. For large codes used daily in production that are under continual development, architecture-specific ports are untenable. Maintainability re- quires single-source application code that is performance portable across a range of architectures and programming models. In this paper we describe RAJA, a portability layer that enables C++ applications to leverage various programming models, and thus architectures, with a single-source codebase. We describe preliminary results using RAJA in three large production codes at Lawrence Livermore National Laboratory, observing 17×, 13× and 12× speedup on GPU-only over CPU- only nodes with single-source application code in each case.\",\"PeriodicalId\":377385,\"journal\":{\"name\":\"2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/P3HPC49587.2019.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/P3HPC49587.2019.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 114

摘要

现代高性能计算系统是多种多样的,硬件设计范围从均匀的多核cpu到GPU或FPGA加速系统。实现理想的应用程序性能通常需要选择最适合特定平台的编程模型。对于在持续开发的生产环境中每天使用的大型代码,特定于体系结构的移植是站不住脚的。可维护性要求单源应用程序代码在各种体系结构和编程模型之间具有性能可移植性。在本文中,我们描述了RAJA,这是一个可移植性层,它使c++应用程序能够利用单一源代码库的各种编程模型和体系结构。我们描述了在劳伦斯利弗莫尔国家实验室的三个大型生产代码中使用RAJA的初步结果,在每种情况下,使用单源应用程序代码,仅gpu的节点比仅CPU的节点加速17倍,13倍和12倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RAJA: Portable Performance for Large-Scale Scientific Applications
Modern high-performance computing systems are diverse, with hardware designs ranging from homogeneous multi- core CPUs to GPU or FPGA accelerated systems. Achieving desir- able application performance often requires choosing a program- ming model best suited to a particular platform. For large codes used daily in production that are under continual development, architecture-specific ports are untenable. Maintainability re- quires single-source application code that is performance portable across a range of architectures and programming models. In this paper we describe RAJA, a portability layer that enables C++ applications to leverage various programming models, and thus architectures, with a single-source codebase. We describe preliminary results using RAJA in three large production codes at Lawrence Livermore National Laboratory, observing 17×, 13× and 12× speedup on GPU-only over CPU- only nodes with single-source application code in each case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Applying Performance Portability Metrics [Copyright notice] Performance Portability of Multi-Material Kernels mdspan in C++: A Case Study in the Integration of Performance Portable Features into International Language Standards RAJA: Portable Performance for Large-Scale Scientific Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1