{"title":"Aeroacousticâs Investigation on High-Lift Device by using a ModernHybrid RANS/LES-Model","authors":"M. Schneider","doi":"10.4172/2168-9792.1000194","DOIUrl":null,"url":null,"abstract":"This study focuses on the development, validation and application of the interdisciplinary computational fluid dynamics/computational aeroacoustics (CFD/CAA) method with the name Flight-Physics Simulator AEOLus (FPSAEOLus). FPS-AEOLus is based on enhanced conservative, anisotropic, hybrid Reynolds-averaged Navier-Stokes/ Large-Eddy Simulation (RANS/LES) techniques to solve an aerodynamic flow field by applying the unsteady, compressible, hyperbolic Navier–Stokes equations of second order. The two-layer SSG/LRR- ω differential Reynolds stress turbulence model presented, combining the Launder- Reece-Rodi (LRR) model near walls with the Speziale-Sarkar-Gatski (SSG) model further apart by applying Menter's blending function F1. Herein, Menter's baseline ω-equation is exploited for supplying the length scale. Another emphasis is put on the anisotropic description of dissipation at close distance to the solid wall or in wake area for describing the friction-induced surface-roughness behaviour in viscous fluid physics and swirling wake effects. For that purpose, the SSG/LRR-ω seven-equations Reynolds stress turbulence model with anisotropic extension was realized, therefor the theory is described in general. Beyond that, a modified delayed detached-eddy simulation (MDDES) and a scale adaptive simulation (SAS) correction to capture the stochastic character of a large-eddy-type unsteady flow with massive flow separations in the broad band is implemented. To demonstrate the time-dependent noise propagation having wave interference a linearized Euler equation (LEE) model using a combined Momentum- and Lamb-vector source have been applied into the CFD/CAA - method. The DLR 15 wing, a High-Lift device in landing configuration having a deployed slat and landing flap is studied experimentally and numerically. The first part of the application deals with the steady flow investigation; however, the same turbulence model is used for the unsteady flow case without the enclosed time derivatives. The second part concentrates on unsteady modelling for the Navier–Stokes and Linearized Euler field. With this new combined CFD/CAA - method, steady and unsteady numerical studies for the high-lift wing configuration for discovering the aerodynamic and –acoustic propagation effects are shown, discussed and when experimental data were available validated. The High-Lift wing has a constant sweep angle of Λ=30° to investigate possible cross-flow; to realize this, periodic boundary conditions were set in spanwise direction","PeriodicalId":356774,"journal":{"name":"Journal of Aeronautics and Aerospace Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aeronautics and Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9792.1000194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的重点是计算流体力学/计算气动声学(CFD/CAA)跨学科方法的开发、验证和应用,命名为飞行物理模拟器AEOLus (FPSAEOLus)。FPS-AEOLus基于增强的保守、各向异性、混合雷诺平均Navier-Stokes/大涡模拟(RANS/LES)技术,通过应用非定常、可压缩、双曲二阶Navier-Stokes方程来求解气动流场。通过Menter的混合函数F1,将Launder- rece - rodi (LRR)模型与speziale - sarka - gatski (SSG)模型相结合,建立了两层SSG/LRR- ω微分雷诺应力湍流模型。在这里,Menter的基线ω-方程被用来提供长度尺度。另一个重点是对固体壁面或尾流区域近距离耗散的各向异性描述,以描述粘性流体物理和旋涡尾流效应中摩擦诱导的表面粗糙度行为。为此,实现了SSG/LRR-ω具有各向异性扩展的七方程雷诺应力湍流模型,从而对理论进行了概括描述。在此基础上,提出了一种改进的延迟分离涡模拟(MDDES)和尺度自适应模拟(SAS)校正方法,以捕捉宽频带大规模分离的大涡型非定常流场的随机特性。为了证明具有波干扰的时变噪声传播,将基于动量和lamb矢量源的线性化欧拉方程(LEE)模型应用于CFD/CAA方法中。对具有展开翼板和襟翼的大升力着陆构型dlr15机翼进行了实验和数值研究。应用程序的第一部分处理稳态流调查;而对于非定常流场,采用了相同的湍流模型,没有封闭的时间导数。第二部分主要讨论了Navier-Stokes和线性化欧拉场的非定常建模。利用这种新的CFD/CAA结合方法,对大升力机翼结构进行了定常和非定常数值研究,以发现气动和声学传播效应,并对实验数据进行了验证。高升力机翼有一个恒定的后掠角Λ=30°,以调查可能的交叉流动;为了实现这一点,在跨向上设置了周期边界条件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aeroacousticâs Investigation on High-Lift Device by using a ModernHybrid RANS/LES-Model
This study focuses on the development, validation and application of the interdisciplinary computational fluid dynamics/computational aeroacoustics (CFD/CAA) method with the name Flight-Physics Simulator AEOLus (FPSAEOLus). FPS-AEOLus is based on enhanced conservative, anisotropic, hybrid Reynolds-averaged Navier-Stokes/ Large-Eddy Simulation (RANS/LES) techniques to solve an aerodynamic flow field by applying the unsteady, compressible, hyperbolic Navier–Stokes equations of second order. The two-layer SSG/LRR- ω differential Reynolds stress turbulence model presented, combining the Launder- Reece-Rodi (LRR) model near walls with the Speziale-Sarkar-Gatski (SSG) model further apart by applying Menter's blending function F1. Herein, Menter's baseline ω-equation is exploited for supplying the length scale. Another emphasis is put on the anisotropic description of dissipation at close distance to the solid wall or in wake area for describing the friction-induced surface-roughness behaviour in viscous fluid physics and swirling wake effects. For that purpose, the SSG/LRR-ω seven-equations Reynolds stress turbulence model with anisotropic extension was realized, therefor the theory is described in general. Beyond that, a modified delayed detached-eddy simulation (MDDES) and a scale adaptive simulation (SAS) correction to capture the stochastic character of a large-eddy-type unsteady flow with massive flow separations in the broad band is implemented. To demonstrate the time-dependent noise propagation having wave interference a linearized Euler equation (LEE) model using a combined Momentum- and Lamb-vector source have been applied into the CFD/CAA - method. The DLR 15 wing, a High-Lift device in landing configuration having a deployed slat and landing flap is studied experimentally and numerically. The first part of the application deals with the steady flow investigation; however, the same turbulence model is used for the unsteady flow case without the enclosed time derivatives. The second part concentrates on unsteady modelling for the Navier–Stokes and Linearized Euler field. With this new combined CFD/CAA - method, steady and unsteady numerical studies for the high-lift wing configuration for discovering the aerodynamic and –acoustic propagation effects are shown, discussed and when experimental data were available validated. The High-Lift wing has a constant sweep angle of Λ=30° to investigate possible cross-flow; to realize this, periodic boundary conditions were set in spanwise direction
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanical Behavior of a Fuselage Stiffened Carbon-Epoxy Panel under Debonding Load On the Modeling of Light Aircraft Landing Gears Various aspects of situation awareness with respect to human-machine-interaction while using optoavionic cockpit instrumentation in aircraft Autopilot Design of Unmanned Aerial Vehicle A New Methodology for Aerodynamic Design and Analysis of a Small Scale Blended Wing Body
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1