Muhammad Abbas, Irum Inayat, Naila Jan, Mehrdad Saadatmand, Eduard Paul Enoiu, Daniel Sundmark
{"title":"使用PageRank算法的基于模型的需求优先排序","authors":"Muhammad Abbas, Irum Inayat, Naila Jan, Mehrdad Saadatmand, Eduard Paul Enoiu, Daniel Sundmark","doi":"10.1109/APSEC48747.2019.00014","DOIUrl":null,"url":null,"abstract":"Requirements prioritization plays an important role in driving project success during software development. Literature reveals that existing requirements prioritization approaches ignore vital factors such as interdependency between requirements. Existing requirements prioritization approaches are also generally time-consuming and involve substantial manual effort. Besides, these approaches show substantial limitations in terms of the number of requirements under consideration. There is some evidence suggesting that models could have a useful role in the analysis of requirements interdependency and their visualization, contributing towards the improvement of the overall requirements prioritization process. However, to date, just a handful of studies are focused on model-based strategies for requirements prioritization, considering only conflict-free functional requirements. This paper uses a meta-model-based approach to help the requirements analyst to model the requirements, stakeholders, and inter-dependencies between requirements. The model instance is then processed by our modified PageRank algorithm to prioritize the given requirements. An experiment was conducted, comparing our modified PageRank algorithm's efficiency and accuracy with five existing requirements prioritization methods. Besides, we also compared our results with a baseline prioritized list of 104 requirements prepared by 28 graduate students. Our results show that our modified PageRank algorithm was able to prioritize the requirements more effectively and efficiently than the other prioritization methods.","PeriodicalId":325642,"journal":{"name":"2019 26th Asia-Pacific Software Engineering Conference (APSEC)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MBRP: Model-Based Requirements Prioritization Using PageRank Algorithm\",\"authors\":\"Muhammad Abbas, Irum Inayat, Naila Jan, Mehrdad Saadatmand, Eduard Paul Enoiu, Daniel Sundmark\",\"doi\":\"10.1109/APSEC48747.2019.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Requirements prioritization plays an important role in driving project success during software development. Literature reveals that existing requirements prioritization approaches ignore vital factors such as interdependency between requirements. Existing requirements prioritization approaches are also generally time-consuming and involve substantial manual effort. Besides, these approaches show substantial limitations in terms of the number of requirements under consideration. There is some evidence suggesting that models could have a useful role in the analysis of requirements interdependency and their visualization, contributing towards the improvement of the overall requirements prioritization process. However, to date, just a handful of studies are focused on model-based strategies for requirements prioritization, considering only conflict-free functional requirements. This paper uses a meta-model-based approach to help the requirements analyst to model the requirements, stakeholders, and inter-dependencies between requirements. The model instance is then processed by our modified PageRank algorithm to prioritize the given requirements. An experiment was conducted, comparing our modified PageRank algorithm's efficiency and accuracy with five existing requirements prioritization methods. Besides, we also compared our results with a baseline prioritized list of 104 requirements prepared by 28 graduate students. Our results show that our modified PageRank algorithm was able to prioritize the requirements more effectively and efficiently than the other prioritization methods.\",\"PeriodicalId\":325642,\"journal\":{\"name\":\"2019 26th Asia-Pacific Software Engineering Conference (APSEC)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 26th Asia-Pacific Software Engineering Conference (APSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSEC48747.2019.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 26th Asia-Pacific Software Engineering Conference (APSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC48747.2019.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MBRP: Model-Based Requirements Prioritization Using PageRank Algorithm
Requirements prioritization plays an important role in driving project success during software development. Literature reveals that existing requirements prioritization approaches ignore vital factors such as interdependency between requirements. Existing requirements prioritization approaches are also generally time-consuming and involve substantial manual effort. Besides, these approaches show substantial limitations in terms of the number of requirements under consideration. There is some evidence suggesting that models could have a useful role in the analysis of requirements interdependency and their visualization, contributing towards the improvement of the overall requirements prioritization process. However, to date, just a handful of studies are focused on model-based strategies for requirements prioritization, considering only conflict-free functional requirements. This paper uses a meta-model-based approach to help the requirements analyst to model the requirements, stakeholders, and inter-dependencies between requirements. The model instance is then processed by our modified PageRank algorithm to prioritize the given requirements. An experiment was conducted, comparing our modified PageRank algorithm's efficiency and accuracy with five existing requirements prioritization methods. Besides, we also compared our results with a baseline prioritized list of 104 requirements prepared by 28 graduate students. Our results show that our modified PageRank algorithm was able to prioritize the requirements more effectively and efficiently than the other prioritization methods.