基于和谐理论和遗传算法的人工情感计算模型

F. Hara, S. Mogi
{"title":"基于和谐理论和遗传算法的人工情感计算模型","authors":"F. Hara, S. Mogi","doi":"10.1109/ROMAN.1993.367682","DOIUrl":null,"url":null,"abstract":"This paper deals with a computational model of artificial emotion for \"Active Human Interface\" that generates emotion and facial expressions from the emotional evaluation state of external stimuli given to the model using the harmony theory, neural network and genetic algorithm. The harmony theory, a type of Boltzmann machine, is employed in this paper, and for this network system, we show a method of learning six basic emotions (joy, anger, sadness, fear, disgust and surprise). We also formulate schemata connecting emotional evaluation states and facial expressions consisting three facial components (eye, eyebrow and mouth). Simulation results show the successful emotion generation demonstrating the effectiveness of the genetic algorithm learning.<<ETX>>","PeriodicalId":270591,"journal":{"name":"Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A computational model of artificial emotion by using harmony theory and genetic algorithm\",\"authors\":\"F. Hara, S. Mogi\",\"doi\":\"10.1109/ROMAN.1993.367682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a computational model of artificial emotion for \\\"Active Human Interface\\\" that generates emotion and facial expressions from the emotional evaluation state of external stimuli given to the model using the harmony theory, neural network and genetic algorithm. The harmony theory, a type of Boltzmann machine, is employed in this paper, and for this network system, we show a method of learning six basic emotions (joy, anger, sadness, fear, disgust and surprise). We also formulate schemata connecting emotional evaluation states and facial expressions consisting three facial components (eye, eyebrow and mouth). Simulation results show the successful emotion generation demonstrating the effectiveness of the genetic algorithm learning.<<ETX>>\",\"PeriodicalId\":270591,\"journal\":{\"name\":\"Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMAN.1993.367682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.1993.367682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文利用和谐理论、神经网络和遗传算法,研究了“主动人机界面”人工情感的计算模型,该模型根据外界刺激的情感评价状态产生情感和面部表情。本文利用玻尔兹曼机的和谐理论,给出了一种学习六种基本情绪(喜、怒、悲、恐、厌、惊)的方法。我们还制定了连接情绪评估状态和面部表情的图式,包括三个面部成分(眼睛,眉毛和嘴)。仿真结果表明,成功地生成了情感,证明了遗传算法学习的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A computational model of artificial emotion by using harmony theory and genetic algorithm
This paper deals with a computational model of artificial emotion for "Active Human Interface" that generates emotion and facial expressions from the emotional evaluation state of external stimuli given to the model using the harmony theory, neural network and genetic algorithm. The harmony theory, a type of Boltzmann machine, is employed in this paper, and for this network system, we show a method of learning six basic emotions (joy, anger, sadness, fear, disgust and surprise). We also formulate schemata connecting emotional evaluation states and facial expressions consisting three facial components (eye, eyebrow and mouth). Simulation results show the successful emotion generation demonstrating the effectiveness of the genetic algorithm learning.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An acoustic abnormal detection system Assembly instruction manual understanding by fusing natural language understanding and technical illustration understanding Augmented audio reality: telepresence/VR hybrid acoustic environments Recognition of band-pass filtered facial images: a comparison between perceptual and memory processes On the concept of Hyper Hospital, a medical care system distributedly constructed on the electronic information network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1