高阶统计量和极端波

E. Powers, In-Seung Park, S. Im, S. Mehta, E. Yi
{"title":"高阶统计量和极端波","authors":"E. Powers, In-Seung Park, S. Im, S. Mehta, E. Yi","doi":"10.1109/HOST.1997.613495","DOIUrl":null,"url":null,"abstract":"A sparse second-order time-domain Volterra model is used to decompose a random (sea) wave train into its first- and second-order components. Extreme waves are shown to result from short-term phase locking of the first- and second-order components. The feasibility of using a wavelet-based bicoherence \"spectrum\" to detect the strong, but short lived, phase coupling is investigated. The results are encouraging and suggest the wavelet-based bicoherence is a topic worth considering further.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Higher-order statistics and extreme waves\",\"authors\":\"E. Powers, In-Seung Park, S. Im, S. Mehta, E. Yi\",\"doi\":\"10.1109/HOST.1997.613495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sparse second-order time-domain Volterra model is used to decompose a random (sea) wave train into its first- and second-order components. Extreme waves are shown to result from short-term phase locking of the first- and second-order components. The feasibility of using a wavelet-based bicoherence \\\"spectrum\\\" to detect the strong, but short lived, phase coupling is investigated. The results are encouraging and suggest the wavelet-based bicoherence is a topic worth considering further.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

采用稀疏二阶时域Volterra模型将随机(海波)序列分解为一阶和二阶分量。极端波是由一阶和二阶分量的短期锁相引起的。研究了利用基于小波的双相干“谱”检测强但短寿命的相位耦合的可行性。结果令人鼓舞,表明基于小波的双相干是一个值得进一步研究的课题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Higher-order statistics and extreme waves
A sparse second-order time-domain Volterra model is used to decompose a random (sea) wave train into its first- and second-order components. Extreme waves are shown to result from short-term phase locking of the first- and second-order components. The feasibility of using a wavelet-based bicoherence "spectrum" to detect the strong, but short lived, phase coupling is investigated. The results are encouraging and suggest the wavelet-based bicoherence is a topic worth considering further.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narrow band source separation in wide band context applications to array signal processing Higher-order statistics for tissue characterization from ultrasound images An iterative mixed norm image restoration algorithm Comparison between asymmetric generalized Gaussian (AGG) and symmetric-/spl alpha/-stable (S/spl alpha/S) noise models for signal estimation in non Gaussian environments Linear algebraic approaches for (almost) periodic moving average system identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1