{"title":"约束优化问题的基于排序的进化算法","authors":"Yibo Hu, Yiu-ming Cheung, Yuping Wang","doi":"10.1109/ICNC.2007.129","DOIUrl":null,"url":null,"abstract":"In constrained optimization problems, evolutionary algorithms often utilize a penalty function to deal with constraints, which is, however, difficult to control the penalty parameters. This paper therefore presents a new constraint handling scheme. It adaptively defines an extended-feasible region that includes not only all feasible solutions, but some infeasible solutions near the boundary of the feasible region. Furthermore, we construct a new fitness function based on stochastic ranking, and meanwhile propose a new crossover operator that can produce more good individuals in general. Accordingly, a new evolutionary algorithm for constrained optimization problems is proposed. The simulations show the efficiency of the proposed algorithm on four benchmark problems.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Ranking-Based Evolutionary Algorithm for Constrained Optimization Problems\",\"authors\":\"Yibo Hu, Yiu-ming Cheung, Yuping Wang\",\"doi\":\"10.1109/ICNC.2007.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In constrained optimization problems, evolutionary algorithms often utilize a penalty function to deal with constraints, which is, however, difficult to control the penalty parameters. This paper therefore presents a new constraint handling scheme. It adaptively defines an extended-feasible region that includes not only all feasible solutions, but some infeasible solutions near the boundary of the feasible region. Furthermore, we construct a new fitness function based on stochastic ranking, and meanwhile propose a new crossover operator that can produce more good individuals in general. Accordingly, a new evolutionary algorithm for constrained optimization problems is proposed. The simulations show the efficiency of the proposed algorithm on four benchmark problems.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Ranking-Based Evolutionary Algorithm for Constrained Optimization Problems
In constrained optimization problems, evolutionary algorithms often utilize a penalty function to deal with constraints, which is, however, difficult to control the penalty parameters. This paper therefore presents a new constraint handling scheme. It adaptively defines an extended-feasible region that includes not only all feasible solutions, but some infeasible solutions near the boundary of the feasible region. Furthermore, we construct a new fitness function based on stochastic ranking, and meanwhile propose a new crossover operator that can produce more good individuals in general. Accordingly, a new evolutionary algorithm for constrained optimization problems is proposed. The simulations show the efficiency of the proposed algorithm on four benchmark problems.