约束优化问题的基于排序的进化算法

Yibo Hu, Yiu-ming Cheung, Yuping Wang
{"title":"约束优化问题的基于排序的进化算法","authors":"Yibo Hu, Yiu-ming Cheung, Yuping Wang","doi":"10.1109/ICNC.2007.129","DOIUrl":null,"url":null,"abstract":"In constrained optimization problems, evolutionary algorithms often utilize a penalty function to deal with constraints, which is, however, difficult to control the penalty parameters. This paper therefore presents a new constraint handling scheme. It adaptively defines an extended-feasible region that includes not only all feasible solutions, but some infeasible solutions near the boundary of the feasible region. Furthermore, we construct a new fitness function based on stochastic ranking, and meanwhile propose a new crossover operator that can produce more good individuals in general. Accordingly, a new evolutionary algorithm for constrained optimization problems is proposed. The simulations show the efficiency of the proposed algorithm on four benchmark problems.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Ranking-Based Evolutionary Algorithm for Constrained Optimization Problems\",\"authors\":\"Yibo Hu, Yiu-ming Cheung, Yuping Wang\",\"doi\":\"10.1109/ICNC.2007.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In constrained optimization problems, evolutionary algorithms often utilize a penalty function to deal with constraints, which is, however, difficult to control the penalty parameters. This paper therefore presents a new constraint handling scheme. It adaptively defines an extended-feasible region that includes not only all feasible solutions, but some infeasible solutions near the boundary of the feasible region. Furthermore, we construct a new fitness function based on stochastic ranking, and meanwhile propose a new crossover operator that can produce more good individuals in general. Accordingly, a new evolutionary algorithm for constrained optimization problems is proposed. The simulations show the efficiency of the proposed algorithm on four benchmark problems.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在约束优化问题中,进化算法通常使用惩罚函数来处理约束,但惩罚参数难以控制。因此,本文提出了一种新的约束处理方案。它自适应地定义了一个扩展可行域,该扩展可行域不仅包括所有可行解,还包括在可行域边界附近的一些不可行解。在此基础上,构造了一种新的基于随机排序的适应度函数,同时提出了一种新的交叉算子,该算子在一般情况下可以产生更多的优秀个体。据此,提出了一种新的求解约束优化问题的进化算法。仿真结果表明,该算法在四个基准问题上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Ranking-Based Evolutionary Algorithm for Constrained Optimization Problems
In constrained optimization problems, evolutionary algorithms often utilize a penalty function to deal with constraints, which is, however, difficult to control the penalty parameters. This paper therefore presents a new constraint handling scheme. It adaptively defines an extended-feasible region that includes not only all feasible solutions, but some infeasible solutions near the boundary of the feasible region. Furthermore, we construct a new fitness function based on stochastic ranking, and meanwhile propose a new crossover operator that can produce more good individuals in general. Accordingly, a new evolutionary algorithm for constrained optimization problems is proposed. The simulations show the efficiency of the proposed algorithm on four benchmark problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1