从字节码生成基于规则的测试输入

Weifeng Xu, Tao Ding, Dianxiang Xu
{"title":"从字节码生成基于规则的测试输入","authors":"Weifeng Xu, Tao Ding, Dianxiang Xu","doi":"10.1109/SERE.2014.24","DOIUrl":null,"url":null,"abstract":"Search-based test generators, such as those using genetic algorithms and alternative variable methods, can automatically generate test inputs. They typically rely on fitness functions to calculate fitness scores for guiding the search process. This paper presents a novel rule-based testing (RBT) approach to automated generation of test inputs from Java byte code without using fitness functions. It extracts tagged paths from the control flow graph of given byte code, analyzes and monitors the predicates in the tagged paths at runtime, and generates test inputs using predefined rules. Our case studies show that RBT has outperformed the test input generators using genetic algorithms and alternative variable methods.","PeriodicalId":248957,"journal":{"name":"2014 Eighth International Conference on Software Security and Reliability","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Rule-Based Test Input Generation from Bytecode\",\"authors\":\"Weifeng Xu, Tao Ding, Dianxiang Xu\",\"doi\":\"10.1109/SERE.2014.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Search-based test generators, such as those using genetic algorithms and alternative variable methods, can automatically generate test inputs. They typically rely on fitness functions to calculate fitness scores for guiding the search process. This paper presents a novel rule-based testing (RBT) approach to automated generation of test inputs from Java byte code without using fitness functions. It extracts tagged paths from the control flow graph of given byte code, analyzes and monitors the predicates in the tagged paths at runtime, and generates test inputs using predefined rules. Our case studies show that RBT has outperformed the test input generators using genetic algorithms and alternative variable methods.\",\"PeriodicalId\":248957,\"journal\":{\"name\":\"2014 Eighth International Conference on Software Security and Reliability\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Eighth International Conference on Software Security and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERE.2014.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Eighth International Conference on Software Security and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERE.2014.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于搜索的测试生成器,例如那些使用遗传算法和可选变量方法的测试生成器,可以自动生成测试输入。它们通常依靠适应度函数来计算适应度分数来指导搜索过程。本文提出了一种新的基于规则的测试(RBT)方法,在不使用适应度函数的情况下,从Java字节码自动生成测试输入。它从给定字节码的控制流图中提取标记路径,在运行时分析和监视标记路径中的谓词,并使用预定义的规则生成测试输入。我们的案例研究表明,RBT优于使用遗传算法和替代变量方法的测试输入生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rule-Based Test Input Generation from Bytecode
Search-based test generators, such as those using genetic algorithms and alternative variable methods, can automatically generate test inputs. They typically rely on fitness functions to calculate fitness scores for guiding the search process. This paper presents a novel rule-based testing (RBT) approach to automated generation of test inputs from Java byte code without using fitness functions. It extracts tagged paths from the control flow graph of given byte code, analyzes and monitors the predicates in the tagged paths at runtime, and generates test inputs using predefined rules. Our case studies show that RBT has outperformed the test input generators using genetic algorithms and alternative variable methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Java Card Operating System Fast Discovery of VM-Sensitive Divergence Points with Basic Block Comparison Traceability-Based Formal Specification Inspection SeTGaM: Generalized Technique for Regression Testing Based on UML/OCL Models Game-Theoretic Strategy Analysis for Data Reliability Management in Cloud Storage Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1