R. Moreno-Gómez-Toledano, M. I. Arenas, Sandra Sánchez-Esteban, Alberto Cook, M. Saura, R. Bosch
{"title":"人体暴露于双酚a的关键分析及其对肾脏、心血管和高血压疾病的新意义","authors":"R. Moreno-Gómez-Toledano, M. I. Arenas, Sandra Sánchez-Esteban, Alberto Cook, M. Saura, R. Bosch","doi":"10.5772/INTECHOPEN.96309","DOIUrl":null,"url":null,"abstract":"Bisphenol A (BPA), an endocrine disruptor involved in synthesizing numerous types of plastics, is detected in almost the entire population’s urine. The present work aims to estimate daily exposure to BPA by systematically reviewing all articles with original data related to urinary BPA concentration. This approach is based on human pharmacokinetic models, which have shown that 100% of BPA (free and metabolized form) is eliminated only in a few hours through urine. Several extensive population studies and experimental data have recently proven a significant association between urinary excretion of BPA and albuminuria, associated with renal damage. Our team’s previous work has shown that low-dose BPA can promote a cytotoxic effect on renal mouse podocytes. Moreover, BPA administration in mice promotes kidney damage and hypertension. Furthermore, preliminary studies in human renal cells in culture (podocytes) strongly suggest that BPA might also promote kidney damage. Overall, the present review analyzed BPA exposure data from mammalian cell studies, experimental animal models, and several human populations. Studying principal cohorts calculated the exposures to BPA globally, showing a high BPA exposure suggesting the need to decrease BPA exposure more effectively, emphasizing groups with higher sensitivity as kidney disease patients.","PeriodicalId":318946,"journal":{"name":"Hot Topics in Endocrinology and Metabolism [Working Title]","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Critical Analysis of Human Exposure to Bisphenol a and its Novel Implications on Renal, Cardiovascular and Hypertensive Diseases\",\"authors\":\"R. Moreno-Gómez-Toledano, M. I. Arenas, Sandra Sánchez-Esteban, Alberto Cook, M. Saura, R. Bosch\",\"doi\":\"10.5772/INTECHOPEN.96309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bisphenol A (BPA), an endocrine disruptor involved in synthesizing numerous types of plastics, is detected in almost the entire population’s urine. The present work aims to estimate daily exposure to BPA by systematically reviewing all articles with original data related to urinary BPA concentration. This approach is based on human pharmacokinetic models, which have shown that 100% of BPA (free and metabolized form) is eliminated only in a few hours through urine. Several extensive population studies and experimental data have recently proven a significant association between urinary excretion of BPA and albuminuria, associated with renal damage. Our team’s previous work has shown that low-dose BPA can promote a cytotoxic effect on renal mouse podocytes. Moreover, BPA administration in mice promotes kidney damage and hypertension. Furthermore, preliminary studies in human renal cells in culture (podocytes) strongly suggest that BPA might also promote kidney damage. Overall, the present review analyzed BPA exposure data from mammalian cell studies, experimental animal models, and several human populations. Studying principal cohorts calculated the exposures to BPA globally, showing a high BPA exposure suggesting the need to decrease BPA exposure more effectively, emphasizing groups with higher sensitivity as kidney disease patients.\",\"PeriodicalId\":318946,\"journal\":{\"name\":\"Hot Topics in Endocrinology and Metabolism [Working Title]\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hot Topics in Endocrinology and Metabolism [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.96309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hot Topics in Endocrinology and Metabolism [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.96309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Critical Analysis of Human Exposure to Bisphenol a and its Novel Implications on Renal, Cardiovascular and Hypertensive Diseases
Bisphenol A (BPA), an endocrine disruptor involved in synthesizing numerous types of plastics, is detected in almost the entire population’s urine. The present work aims to estimate daily exposure to BPA by systematically reviewing all articles with original data related to urinary BPA concentration. This approach is based on human pharmacokinetic models, which have shown that 100% of BPA (free and metabolized form) is eliminated only in a few hours through urine. Several extensive population studies and experimental data have recently proven a significant association between urinary excretion of BPA and albuminuria, associated with renal damage. Our team’s previous work has shown that low-dose BPA can promote a cytotoxic effect on renal mouse podocytes. Moreover, BPA administration in mice promotes kidney damage and hypertension. Furthermore, preliminary studies in human renal cells in culture (podocytes) strongly suggest that BPA might also promote kidney damage. Overall, the present review analyzed BPA exposure data from mammalian cell studies, experimental animal models, and several human populations. Studying principal cohorts calculated the exposures to BPA globally, showing a high BPA exposure suggesting the need to decrease BPA exposure more effectively, emphasizing groups with higher sensitivity as kidney disease patients.