平面标记心脏MR图像不规则区域三维位移场重建

T. Denney, Jerry L Prince
{"title":"平面标记心脏MR图像不规则区域三维位移场重建","authors":"T. Denney, Jerry L Prince","doi":"10.1109/MNRAO.1994.346239","DOIUrl":null,"url":null,"abstract":"An important application of deformable motion estimation theory is the estimation of heart motion from tagged magnetic resonance image sequences. In tagged MR images, the heart appears with a spatially encoded pattern that moves with the tissue. The position of the tag pattern in each frame of the image sequence can be used to obtain sparse measurements of the heart's 3D displacement field. In this paper, we propose a method for estimating a dense displacement field from sparse displacement measurements that is based on a multidimensional stochastic model for the smoothness and divergence of the displacement field and uses the Fisher estimation framework. The main feature of this method is that the displacement field model and the resulting estimate equation are defined only on the irregular domain of the myocardium. Simulation results are presented that demonstrate the accuracy of our method and show the effect of the tag pattern on the estimation error.<<ETX>>","PeriodicalId":336218,"journal":{"name":"Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"3D displacement field reconstruction on an irregular domain from planar tagged cardiac MR images\",\"authors\":\"T. Denney, Jerry L Prince\",\"doi\":\"10.1109/MNRAO.1994.346239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important application of deformable motion estimation theory is the estimation of heart motion from tagged magnetic resonance image sequences. In tagged MR images, the heart appears with a spatially encoded pattern that moves with the tissue. The position of the tag pattern in each frame of the image sequence can be used to obtain sparse measurements of the heart's 3D displacement field. In this paper, we propose a method for estimating a dense displacement field from sparse displacement measurements that is based on a multidimensional stochastic model for the smoothness and divergence of the displacement field and uses the Fisher estimation framework. The main feature of this method is that the displacement field model and the resulting estimate equation are defined only on the irregular domain of the myocardium. Simulation results are presented that demonstrate the accuracy of our method and show the effect of the tag pattern on the estimation error.<<ETX>>\",\"PeriodicalId\":336218,\"journal\":{\"name\":\"Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNRAO.1994.346239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE Workshop on Motion of Non-rigid and Articulated Objects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNRAO.1994.346239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

可变形运动估计理论的一个重要应用是从标记磁共振图像序列中估计心脏运动。在带标签的磁共振图像中,心脏以一种随组织移动的空间编码模式出现。标记图案在图像序列的每一帧中的位置可用于获得心脏三维位移场的稀疏测量。在本文中,我们提出了一种从稀疏位移测量中估计密集位移场的方法,该方法基于位移场平滑度和散度的多维随机模型,并使用Fisher估计框架。该方法的主要特点是只在心肌不规则区域上定义位移场模型和估计方程。仿真结果证明了该方法的准确性,并显示了标签模式对估计误差的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D displacement field reconstruction on an irregular domain from planar tagged cardiac MR images
An important application of deformable motion estimation theory is the estimation of heart motion from tagged magnetic resonance image sequences. In tagged MR images, the heart appears with a spatially encoded pattern that moves with the tissue. The position of the tag pattern in each frame of the image sequence can be used to obtain sparse measurements of the heart's 3D displacement field. In this paper, we propose a method for estimating a dense displacement field from sparse displacement measurements that is based on a multidimensional stochastic model for the smoothness and divergence of the displacement field and uses the Fisher estimation framework. The main feature of this method is that the displacement field model and the resulting estimate equation are defined only on the irregular domain of the myocardium. Simulation results are presented that demonstrate the accuracy of our method and show the effect of the tag pattern on the estimation error.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting irregularities in cyclic motion Contour tracking by multi-frame relaxation A system for human motion matching between synthetic and real images based on a biomechanic graphical model Segmenting independently moving, noisy points Analyzing gait with spatiotemporal surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1