Irida Shallari, Qaiser Anwar, Muhammad Imran, M. O’nils
{"title":"热成像图像的背景建模、分析和实现","authors":"Irida Shallari, Qaiser Anwar, Muhammad Imran, M. O’nils","doi":"10.1109/IPTA.2017.8310078","DOIUrl":null,"url":null,"abstract":"Background subtraction is one of the fundamental steps in the image-processing pipeline for distinguishing foreground from background. Most of the methods have been investigated with respect to visual images, in which case challenges are different compared to thermal images. Thermal sensors are invariant to light changes and have reduced privacy concerns. We propose the use of a low-pass IIR filter for background modelling in thermographic imagery due to its better performance compared to algorithms such as Mixture of Gaussians and K-nearest neighbour, while reducing memory requirements for implementation in embedded architectures. Based on the analysis of four different image datasets both indoor and outdoor, with and without people presence, the learning rate for the filter is set to 3×10−3 Hz and the proposed model is implemented on an Artix-7 FPGA.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Background modelling, analysis and implementation for thermographic images\",\"authors\":\"Irida Shallari, Qaiser Anwar, Muhammad Imran, M. O’nils\",\"doi\":\"10.1109/IPTA.2017.8310078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background subtraction is one of the fundamental steps in the image-processing pipeline for distinguishing foreground from background. Most of the methods have been investigated with respect to visual images, in which case challenges are different compared to thermal images. Thermal sensors are invariant to light changes and have reduced privacy concerns. We propose the use of a low-pass IIR filter for background modelling in thermographic imagery due to its better performance compared to algorithms such as Mixture of Gaussians and K-nearest neighbour, while reducing memory requirements for implementation in embedded architectures. Based on the analysis of four different image datasets both indoor and outdoor, with and without people presence, the learning rate for the filter is set to 3×10−3 Hz and the proposed model is implemented on an Artix-7 FPGA.\",\"PeriodicalId\":316356,\"journal\":{\"name\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2017.8310078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Background modelling, analysis and implementation for thermographic images
Background subtraction is one of the fundamental steps in the image-processing pipeline for distinguishing foreground from background. Most of the methods have been investigated with respect to visual images, in which case challenges are different compared to thermal images. Thermal sensors are invariant to light changes and have reduced privacy concerns. We propose the use of a low-pass IIR filter for background modelling in thermographic imagery due to its better performance compared to algorithms such as Mixture of Gaussians and K-nearest neighbour, while reducing memory requirements for implementation in embedded architectures. Based on the analysis of four different image datasets both indoor and outdoor, with and without people presence, the learning rate for the filter is set to 3×10−3 Hz and the proposed model is implemented on an Artix-7 FPGA.