{"title":"机器学习设计一种自动调谐系统,用于并行稀疏计算的最佳压缩格式检测","authors":"O. Hamdi-Larbi, Ichrak Mehrez, T. Dufaud","doi":"10.1142/s0129626421500195","DOIUrl":null,"url":null,"abstract":"Many applications in scientific computing process very large sparse matrices on parallel architectures. The presented work in this paper is a part of a project where our general aim is to develop an auto-tuner system for the selection of the best matrix compression format in the context of high-performance computing. The target smart system can automatically select the best compression format for a given sparse matrix, a numerical method processing this matrix, a parallel programming model and a target architecture. Hence, this paper describes the design and implementation of the proposed concept. We consider a case study consisting of a numerical method reduced to the sparse matrix vector product (SpMV), some compression formats, the data parallel as a programming model and, a distributed multi-core platform as a target architecture. This study allows extracting a set of important novel metrics and parameters which are relative to the considered programming model. Our metrics are used as input to a machine-learning algorithm to predict the best matrix compression format. An experimental study targeting a distributed multi-core platform and processing random and real-world matrices shows that our system can improve in average up to 7% the accuracy of the machine learning.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning to Design an Auto-tuning System for the Best Compressed Format Detection for Parallel Sparse Computations\",\"authors\":\"O. Hamdi-Larbi, Ichrak Mehrez, T. Dufaud\",\"doi\":\"10.1142/s0129626421500195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many applications in scientific computing process very large sparse matrices on parallel architectures. The presented work in this paper is a part of a project where our general aim is to develop an auto-tuner system for the selection of the best matrix compression format in the context of high-performance computing. The target smart system can automatically select the best compression format for a given sparse matrix, a numerical method processing this matrix, a parallel programming model and a target architecture. Hence, this paper describes the design and implementation of the proposed concept. We consider a case study consisting of a numerical method reduced to the sparse matrix vector product (SpMV), some compression formats, the data parallel as a programming model and, a distributed multi-core platform as a target architecture. This study allows extracting a set of important novel metrics and parameters which are relative to the considered programming model. Our metrics are used as input to a machine-learning algorithm to predict the best matrix compression format. An experimental study targeting a distributed multi-core platform and processing random and real-world matrices shows that our system can improve in average up to 7% the accuracy of the machine learning.\",\"PeriodicalId\":422436,\"journal\":{\"name\":\"Parallel Process. Lett.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Process. Lett.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129626421500195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129626421500195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning to Design an Auto-tuning System for the Best Compressed Format Detection for Parallel Sparse Computations
Many applications in scientific computing process very large sparse matrices on parallel architectures. The presented work in this paper is a part of a project where our general aim is to develop an auto-tuner system for the selection of the best matrix compression format in the context of high-performance computing. The target smart system can automatically select the best compression format for a given sparse matrix, a numerical method processing this matrix, a parallel programming model and a target architecture. Hence, this paper describes the design and implementation of the proposed concept. We consider a case study consisting of a numerical method reduced to the sparse matrix vector product (SpMV), some compression formats, the data parallel as a programming model and, a distributed multi-core platform as a target architecture. This study allows extracting a set of important novel metrics and parameters which are relative to the considered programming model. Our metrics are used as input to a machine-learning algorithm to predict the best matrix compression format. An experimental study targeting a distributed multi-core platform and processing random and real-world matrices shows that our system can improve in average up to 7% the accuracy of the machine learning.