{"title":"“澳洲假丝酵母”相关菌株(16SrII-D亚群)侵染苜蓿植株的生理生化变化","authors":"H. Ayvacı, M. Güldür, M. Dikilitas","doi":"10.5423/PPJ.OA.12.2021.0189","DOIUrl":null,"url":null,"abstract":"Changes in physiological and biochemical patterns in lucerne plants caused by the presence of ‘Candidatus Phytoplasma australasia’, which is one of the significant pathogens causing yield losses in lucerne plants, were investigated. Significant differences were evident in total chlorophyll, chlorophyll a, chlorophyll b, and protein amounts between ‘Ca. Phytoplasma australasia’-positive and negative lucerne plants. Stress-related metabolites such as phenol, malondialdehyde, and proline accumulations in ‘Ca. Phytoplasma australasia’-positive plants were remarkably higher than those of phytoplasma-negative plants. As a response to disease attack, phytoplasma-positive plants exhibited higher antioxidant enzymes (peroxidase and catalase) and non-enzymatic metabolite responses such as jasmonic and salicylic acids. We state that partial disease responses were revealed for the first time to breed resistant lucerne lines infected by ‘Ca. Phytoplasma australasia’.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiological and Biochemical Changes in Lucerne (Medicago sativa) Plants Infected with ‘Candidatus Phytoplasma australasia’-Related Strain (16SrII-D Subgroup)\",\"authors\":\"H. Ayvacı, M. Güldür, M. Dikilitas\",\"doi\":\"10.5423/PPJ.OA.12.2021.0189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changes in physiological and biochemical patterns in lucerne plants caused by the presence of ‘Candidatus Phytoplasma australasia’, which is one of the significant pathogens causing yield losses in lucerne plants, were investigated. Significant differences were evident in total chlorophyll, chlorophyll a, chlorophyll b, and protein amounts between ‘Ca. Phytoplasma australasia’-positive and negative lucerne plants. Stress-related metabolites such as phenol, malondialdehyde, and proline accumulations in ‘Ca. Phytoplasma australasia’-positive plants were remarkably higher than those of phytoplasma-negative plants. As a response to disease attack, phytoplasma-positive plants exhibited higher antioxidant enzymes (peroxidase and catalase) and non-enzymatic metabolite responses such as jasmonic and salicylic acids. We state that partial disease responses were revealed for the first time to breed resistant lucerne lines infected by ‘Ca. Phytoplasma australasia’.\",\"PeriodicalId\":101515,\"journal\":{\"name\":\"The Plant Pathology Journal\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Pathology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5423/PPJ.OA.12.2021.0189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Pathology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5423/PPJ.OA.12.2021.0189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physiological and Biochemical Changes in Lucerne (Medicago sativa) Plants Infected with ‘Candidatus Phytoplasma australasia’-Related Strain (16SrII-D Subgroup)
Changes in physiological and biochemical patterns in lucerne plants caused by the presence of ‘Candidatus Phytoplasma australasia’, which is one of the significant pathogens causing yield losses in lucerne plants, were investigated. Significant differences were evident in total chlorophyll, chlorophyll a, chlorophyll b, and protein amounts between ‘Ca. Phytoplasma australasia’-positive and negative lucerne plants. Stress-related metabolites such as phenol, malondialdehyde, and proline accumulations in ‘Ca. Phytoplasma australasia’-positive plants were remarkably higher than those of phytoplasma-negative plants. As a response to disease attack, phytoplasma-positive plants exhibited higher antioxidant enzymes (peroxidase and catalase) and non-enzymatic metabolite responses such as jasmonic and salicylic acids. We state that partial disease responses were revealed for the first time to breed resistant lucerne lines infected by ‘Ca. Phytoplasma australasia’.