基于多智能体系统的住宅电动汽车并网服务管理系统

M. Nizami, M. Hossain, S. Rafique, K. Mahmud, U. Irshad, G. Town
{"title":"基于多智能体系统的住宅电动汽车并网服务管理系统","authors":"M. Nizami, M. Hossain, S. Rafique, K. Mahmud, U. Irshad, G. Town","doi":"10.1109/EEEIC.2019.8783799","DOIUrl":null,"url":null,"abstract":"With a spike in popularity and sales, the electric vehicles (EVs) have revolutionized the transportation industry. As EV technology advances, the EVs are becoming more accessible and affordable. Therefore, a rapid proliferation of light-duty EVs have been noticed in the residential sector. Even though the increased charging demand of EVs is manageable in large-scale, the low-voltage (LV) residential networks might not be capable of managing localized capacity issues of large scale EV integration. Dynamic electricity tariff coupled with demand response and smart charging management can provide grid assistance to some extent. However, uncoordinated charging, if clustered in a residential distribution feeder, can risk grid assets because of overloading and can even jeopardize the reliability of the network by violating voltage constraints. This paper proposes a coordinated residential EV management system for power grid support. Charging and discharging of residential EV batteries are coordinated and optimized to address grid overloading during peak demand periods and voltage constraint violations. The EV management for grid support is formulated as a mixed-integer programming based optimization problem to minimize the inconveniences of EV owner while providing grid assistance. The proposed methodology is evaluated via a case study based on a residential feeder in Sydney, Australia with actual load demand data. The simulation results indicate the efficacy of the proposed EV management method for mitigating grid overloading and maintaining desired bus voltages.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Multi-agent system based residential electric vehicle management system for grid-support service\",\"authors\":\"M. Nizami, M. Hossain, S. Rafique, K. Mahmud, U. Irshad, G. Town\",\"doi\":\"10.1109/EEEIC.2019.8783799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With a spike in popularity and sales, the electric vehicles (EVs) have revolutionized the transportation industry. As EV technology advances, the EVs are becoming more accessible and affordable. Therefore, a rapid proliferation of light-duty EVs have been noticed in the residential sector. Even though the increased charging demand of EVs is manageable in large-scale, the low-voltage (LV) residential networks might not be capable of managing localized capacity issues of large scale EV integration. Dynamic electricity tariff coupled with demand response and smart charging management can provide grid assistance to some extent. However, uncoordinated charging, if clustered in a residential distribution feeder, can risk grid assets because of overloading and can even jeopardize the reliability of the network by violating voltage constraints. This paper proposes a coordinated residential EV management system for power grid support. Charging and discharging of residential EV batteries are coordinated and optimized to address grid overloading during peak demand periods and voltage constraint violations. The EV management for grid support is formulated as a mixed-integer programming based optimization problem to minimize the inconveniences of EV owner while providing grid assistance. The proposed methodology is evaluated via a case study based on a residential feeder in Sydney, Australia with actual load demand data. The simulation results indicate the efficacy of the proposed EV management method for mitigating grid overloading and maintaining desired bus voltages.\",\"PeriodicalId\":422977,\"journal\":{\"name\":\"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2019.8783799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2019.8783799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

随着电动汽车的普及和销量的飙升,电动汽车已经彻底改变了交通运输行业。随着电动汽车技术的进步,电动汽车正变得越来越容易获得和负担得起。因此,轻型电动汽车在住宅领域的迅速扩散已经引起了人们的注意。尽管电动汽车充电需求的增加在大规模范围内是可控的,但低压(LV)住宅网络可能无法解决大规模电动汽车集成的局部容量问题。动态电价与需求响应和智能充电管理相结合,可以在一定程度上为电网提供辅助。然而,不协调的充电,如果集中在一个住宅配电馈线上,可能会因为过载而危及电网资产,甚至可能因违反电压约束而危及网络的可靠性。提出了一种面向电网支持的住宅电动汽车协同管理系统。通过对住宅用电动汽车电池充放电的协调优化,解决了用电高峰期电网过载和电压约束违规问题。将电网支持下的电动汽车管理问题表述为基于混合整数规划的优化问题,以最大限度地减少电动汽车车主在提供电网支持的同时所带来的不便。通过对澳大利亚悉尼住宅供电系统的实际负荷需求数据进行案例研究,对所提出的方法进行了评估。仿真结果表明了所提出的电动汽车管理方法在减轻电网过载和维持理想母线电压方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-agent system based residential electric vehicle management system for grid-support service
With a spike in popularity and sales, the electric vehicles (EVs) have revolutionized the transportation industry. As EV technology advances, the EVs are becoming more accessible and affordable. Therefore, a rapid proliferation of light-duty EVs have been noticed in the residential sector. Even though the increased charging demand of EVs is manageable in large-scale, the low-voltage (LV) residential networks might not be capable of managing localized capacity issues of large scale EV integration. Dynamic electricity tariff coupled with demand response and smart charging management can provide grid assistance to some extent. However, uncoordinated charging, if clustered in a residential distribution feeder, can risk grid assets because of overloading and can even jeopardize the reliability of the network by violating voltage constraints. This paper proposes a coordinated residential EV management system for power grid support. Charging and discharging of residential EV batteries are coordinated and optimized to address grid overloading during peak demand periods and voltage constraint violations. The EV management for grid support is formulated as a mixed-integer programming based optimization problem to minimize the inconveniences of EV owner while providing grid assistance. The proposed methodology is evaluated via a case study based on a residential feeder in Sydney, Australia with actual load demand data. The simulation results indicate the efficacy of the proposed EV management method for mitigating grid overloading and maintaining desired bus voltages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Development Process and User-centric Data Driven Design for an Integrated Energy System Machine Learning for Agile and Self-Adaptive Congestion Management in Active Distribution Networks Full Bridge LLC Resonant Three-Phase Interleaved Multi Converter For HV Applications Standalone PV-BES-DG Based Microgrid with Power Quality Improvements Performance of Neural Network Based Controllers and ΔΣ-Based PID Controllers for Networked Control Systems: A Comparative Investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1