聚焦网络蜘蛛中测量文档相关性的进化模型

I. López, P. A. Alvarez-Carrillo, E. Fernández-González
{"title":"聚焦网络蜘蛛中测量文档相关性的进化模型","authors":"I. López, P. A. Alvarez-Carrillo, E. Fernández-González","doi":"10.1109/CERMA.2008.28","DOIUrl":null,"url":null,"abstract":"Exploring the Web in search of relevant information is a difficult task due to the vast amount of documents it stores and to the heterogeneity of such documents. Using automated systems such as search engines help users cope with the size of the Web. However the results produced by these systems usually contain documents from a large variety of topics with little or no relevance to the end user. In this work, we propose a model that can be used by a Web spider to selectively explore the Web for relevant documents. In this model, two criteria are used for assessing document relevance; content and structure. These two criteria are integrated in a fuzzy predicate that indicates the degree of relevance of a document with respect to a user-defined topic. The parameters of the proposed model are generated by a genetic algorithm that solves a bi-criteria optimization problem.","PeriodicalId":126172,"journal":{"name":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Evolutionary Model for Measuring Document Relevance in a Focused Web Spider\",\"authors\":\"I. López, P. A. Alvarez-Carrillo, E. Fernández-González\",\"doi\":\"10.1109/CERMA.2008.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring the Web in search of relevant information is a difficult task due to the vast amount of documents it stores and to the heterogeneity of such documents. Using automated systems such as search engines help users cope with the size of the Web. However the results produced by these systems usually contain documents from a large variety of topics with little or no relevance to the end user. In this work, we propose a model that can be used by a Web spider to selectively explore the Web for relevant documents. In this model, two criteria are used for assessing document relevance; content and structure. These two criteria are integrated in a fuzzy predicate that indicates the degree of relevance of a document with respect to a user-defined topic. The parameters of the proposed model are generated by a genetic algorithm that solves a bi-criteria optimization problem.\",\"PeriodicalId\":126172,\"journal\":{\"name\":\"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CERMA.2008.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2008.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在Web上搜索相关信息是一项艰巨的任务,因为它存储了大量的文档,而且这些文档具有异构性。使用诸如搜索引擎之类的自动化系统可以帮助用户处理网络的大小。然而,这些系统产生的结果通常包含与最终用户很少或没有相关性的各种主题的文档。在这项工作中,我们提出了一个网络蜘蛛可以使用的模型,该模型可以选择性地在网络上搜索相关文档。在该模型中,有两个标准用于评估文档相关性;内容和结构。这两个标准集成在一个模糊谓词中,该谓词指示文档相对于用户定义主题的相关性程度。该模型的参数由一种求解双准则优化问题的遗传算法生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Evolutionary Model for Measuring Document Relevance in a Focused Web Spider
Exploring the Web in search of relevant information is a difficult task due to the vast amount of documents it stores and to the heterogeneity of such documents. Using automated systems such as search engines help users cope with the size of the Web. However the results produced by these systems usually contain documents from a large variety of topics with little or no relevance to the end user. In this work, we propose a model that can be used by a Web spider to selectively explore the Web for relevant documents. In this model, two criteria are used for assessing document relevance; content and structure. These two criteria are integrated in a fuzzy predicate that indicates the degree of relevance of a document with respect to a user-defined topic. The parameters of the proposed model are generated by a genetic algorithm that solves a bi-criteria optimization problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling a Vehicle Using Bond Graphs The Laplacian Artificial Potential Field (LAPF) for the Path Planning of Robotic Manipulators Cooperative Adaptive Behavior Acquisition in Mobile Robot Swarms Using Neural Networks and Genetic Algorithms Design and Construction of an EEG Data Acquisition System for Measurement of Auditory Evoked Potentials Proposal for a Remote Surgery System Based on Wireless Communications, Electromyography and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1