全光学相机在近距离在轨服务机动中对机器人视觉的好处

M. Lingenauber, Klaus H. Strobl, N. Oumer, Simon Kriegel
{"title":"全光学相机在近距离在轨服务机动中对机器人视觉的好处","authors":"M. Lingenauber, Klaus H. Strobl, N. Oumer, Simon Kriegel","doi":"10.1109/AERO.2017.7943666","DOIUrl":null,"url":null,"abstract":"This paper discusses the potential benefits of plenoptic cameras for robot vision during on-orbit servicing missions. Robot vision is essential for the accurate and reliable positioning of a robotic arm with millimeter accuracy during tasks such as grasping, inspection or repair that are performed in close range to a client satellite. Our discussion of the plenoptic camera technology provides an overview of the conceptional advantages for robot vision with regard to the conditions during an on-orbit servicing mission. A plenoptic camera, also known as light field camera, is basically a conventional camera system equipped with an additional array of lenslets, the micro lens array, at a distance of a few micrometers in front of the camera sensor. Due to the micro lens array it is possible to record not only the incidence location of a light ray but also its incidence direction on the sensor, resulting in a 4-D data set known as a light field. The 4-D light field allows to derive regular 2-D intensity images with a significantly extended depth of field compared to a conventional camera. This results in a set of advantages, such as software based refocusing or increased image quality in low light conditions due to recording with an optimal aperture while maintaining an extended depth of field. Additionally, the parallax between corresponding lenslets allows to derive 3-D depth images from the same light field and therefore to substitute a stereo vision system with a single camera. Given the conceptual advantages, we investigate what can be expected from plenoptic cameras during close range robotic operations in the course of an on-orbit servicing mission. This includes topics such as image quality, extension of the depth of field, 3-D depth map generation and low light capabilities. Our discussion is backed by image sequences for an on-orbit servicing scenario that were recorded in a representative laboratory environment with simulated in-orbit illumination conditions. We mounted a plenoptic camera on a robot arm and performed an approach trajectory from up to 2 m towards a full-scale satellite mockup. Using these images, we investigated how the light field processing performs, e.g. in terms of depth of field extension, image quality and depth estimation. We were also able to show the applicability of images derived from light fields for the purpose of the visual based pose estimation of a target point.","PeriodicalId":224475,"journal":{"name":"2017 IEEE Aerospace Conference","volume":"417 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Benefits of plenoptic cameras for robot vision during close range on-orbit servicing maneuvers\",\"authors\":\"M. Lingenauber, Klaus H. Strobl, N. Oumer, Simon Kriegel\",\"doi\":\"10.1109/AERO.2017.7943666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the potential benefits of plenoptic cameras for robot vision during on-orbit servicing missions. Robot vision is essential for the accurate and reliable positioning of a robotic arm with millimeter accuracy during tasks such as grasping, inspection or repair that are performed in close range to a client satellite. Our discussion of the plenoptic camera technology provides an overview of the conceptional advantages for robot vision with regard to the conditions during an on-orbit servicing mission. A plenoptic camera, also known as light field camera, is basically a conventional camera system equipped with an additional array of lenslets, the micro lens array, at a distance of a few micrometers in front of the camera sensor. Due to the micro lens array it is possible to record not only the incidence location of a light ray but also its incidence direction on the sensor, resulting in a 4-D data set known as a light field. The 4-D light field allows to derive regular 2-D intensity images with a significantly extended depth of field compared to a conventional camera. This results in a set of advantages, such as software based refocusing or increased image quality in low light conditions due to recording with an optimal aperture while maintaining an extended depth of field. Additionally, the parallax between corresponding lenslets allows to derive 3-D depth images from the same light field and therefore to substitute a stereo vision system with a single camera. Given the conceptual advantages, we investigate what can be expected from plenoptic cameras during close range robotic operations in the course of an on-orbit servicing mission. This includes topics such as image quality, extension of the depth of field, 3-D depth map generation and low light capabilities. Our discussion is backed by image sequences for an on-orbit servicing scenario that were recorded in a representative laboratory environment with simulated in-orbit illumination conditions. We mounted a plenoptic camera on a robot arm and performed an approach trajectory from up to 2 m towards a full-scale satellite mockup. Using these images, we investigated how the light field processing performs, e.g. in terms of depth of field extension, image quality and depth estimation. We were also able to show the applicability of images derived from light fields for the purpose of the visual based pose estimation of a target point.\",\"PeriodicalId\":224475,\"journal\":{\"name\":\"2017 IEEE Aerospace Conference\",\"volume\":\"417 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2017.7943666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2017.7943666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文讨论了全光学相机在在轨维修任务中对机器人视觉的潜在好处。机器人视觉对于机器人手臂精确可靠的毫米级定位至关重要,例如在近距离执行客户卫星的抓取、检查或维修任务。我们对全光学相机技术的讨论概述了在轨维修任务期间机器人视觉的概念优势。全光学相机,也被称为光场相机,基本上是一种传统的相机系统,在相机传感器前面几微米的距离上配备了一个额外的透镜阵列,即微透镜阵列。由于微透镜阵列,不仅可以记录光线的入射位置,还可以记录光线在传感器上的入射方向,从而产生称为光场的4维数据集。与传统相机相比,4-D光场允许导出具有显著扩展景深的常规2-D强度图像。这带来了一系列优势,例如基于软件的重新对焦或在低光条件下提高图像质量,因为在保持扩展景深的同时使用最佳光圈进行记录。此外,相应透镜之间的视差允许从相同的光场中获得三维深度图像,因此可以用单个相机代替立体视觉系统。考虑到概念上的优势,我们研究了在在轨维修任务过程中,全光学相机在近距离机器人操作过程中的预期效果。这包括图像质量、景深扩展、3d深度图生成和弱光能力等主题。我们的讨论以在轨维修场景的图像序列为基础,这些图像序列是在模拟在轨照明条件的代表性实验室环境中记录的。我们在机械臂上安装了一个全光学摄像机,并从2米的高度向全尺寸卫星模型进行了接近轨迹。利用这些图像,我们研究了光场处理的性能,例如在景深扩展,图像质量和深度估计方面。我们还能够展示来自光场的图像的适用性,用于目标点的基于视觉的姿态估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benefits of plenoptic cameras for robot vision during close range on-orbit servicing maneuvers
This paper discusses the potential benefits of plenoptic cameras for robot vision during on-orbit servicing missions. Robot vision is essential for the accurate and reliable positioning of a robotic arm with millimeter accuracy during tasks such as grasping, inspection or repair that are performed in close range to a client satellite. Our discussion of the plenoptic camera technology provides an overview of the conceptional advantages for robot vision with regard to the conditions during an on-orbit servicing mission. A plenoptic camera, also known as light field camera, is basically a conventional camera system equipped with an additional array of lenslets, the micro lens array, at a distance of a few micrometers in front of the camera sensor. Due to the micro lens array it is possible to record not only the incidence location of a light ray but also its incidence direction on the sensor, resulting in a 4-D data set known as a light field. The 4-D light field allows to derive regular 2-D intensity images with a significantly extended depth of field compared to a conventional camera. This results in a set of advantages, such as software based refocusing or increased image quality in low light conditions due to recording with an optimal aperture while maintaining an extended depth of field. Additionally, the parallax between corresponding lenslets allows to derive 3-D depth images from the same light field and therefore to substitute a stereo vision system with a single camera. Given the conceptual advantages, we investigate what can be expected from plenoptic cameras during close range robotic operations in the course of an on-orbit servicing mission. This includes topics such as image quality, extension of the depth of field, 3-D depth map generation and low light capabilities. Our discussion is backed by image sequences for an on-orbit servicing scenario that were recorded in a representative laboratory environment with simulated in-orbit illumination conditions. We mounted a plenoptic camera on a robot arm and performed an approach trajectory from up to 2 m towards a full-scale satellite mockup. Using these images, we investigated how the light field processing performs, e.g. in terms of depth of field extension, image quality and depth estimation. We were also able to show the applicability of images derived from light fields for the purpose of the visual based pose estimation of a target point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Schedule and program The search for exoplanets using ultra-long wavelength radio astronomy Molecular analyzer for Complex Refractory Organic-rich Surfaces (MACROS) GPU accelerated multispectral EO imagery optimised CCSDS-123 lossless compression implementation Ground based test verification of a nonlinear vibration isolation system for cryocoolers of the Soft X-ray Spectrometer (SXS) onboard ASTRO-H (Hitomi)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1