基于Agent的建模中的依赖关系来源

Peng Chen, Beth Plale, Tom Evans
{"title":"基于Agent的建模中的依赖关系来源","authors":"Peng Chen, Beth Plale, Tom Evans","doi":"10.1109/eScience.2013.39","DOIUrl":null,"url":null,"abstract":"Researchers who use agent-based models (ABM) to model social patterns often focus on the model's aggregate phenomena. However, aggregation of individuals complicates the understanding of agent interactions and the uniqueness of individuals. We develop a method for tracing and capturing the provenance of individuals and their interactions in the Net Logo ABM, and from this create a \"dependency provenance slice\", which combines a data slice and a program slice to yield insights into the cause-effect relations among system behaviors. To cope with the large volume of fine-grained provenance traces, we propose use-inspired filters to reduce the amount of provenance, and a provenance slicing technique called \"non-preprocessing provenance slicing\" that directly queries over provenance traces without recovering all provenance entities and dependencies beforehand. We evaluate performance and utility using a well known ecological Net Logo model called \"wolf-sheep-predation\".","PeriodicalId":325272,"journal":{"name":"2013 IEEE 9th International Conference on e-Science","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Dependency Provenance in Agent Based Modeling\",\"authors\":\"Peng Chen, Beth Plale, Tom Evans\",\"doi\":\"10.1109/eScience.2013.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers who use agent-based models (ABM) to model social patterns often focus on the model's aggregate phenomena. However, aggregation of individuals complicates the understanding of agent interactions and the uniqueness of individuals. We develop a method for tracing and capturing the provenance of individuals and their interactions in the Net Logo ABM, and from this create a \\\"dependency provenance slice\\\", which combines a data slice and a program slice to yield insights into the cause-effect relations among system behaviors. To cope with the large volume of fine-grained provenance traces, we propose use-inspired filters to reduce the amount of provenance, and a provenance slicing technique called \\\"non-preprocessing provenance slicing\\\" that directly queries over provenance traces without recovering all provenance entities and dependencies beforehand. We evaluate performance and utility using a well known ecological Net Logo model called \\\"wolf-sheep-predation\\\".\",\"PeriodicalId\":325272,\"journal\":{\"name\":\"2013 IEEE 9th International Conference on e-Science\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 9th International Conference on e-Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2013.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 9th International Conference on e-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2013.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

使用基于主体的模型(ABM)对社会模式进行建模的研究人员通常关注模型的聚合现象。然而,个体的聚集使对代理相互作用和个体独特性的理解变得复杂。我们开发了一种在Net Logo ABM中跟踪和捕获个体及其交互的来源的方法,并由此创建了一个“依赖来源片”,它结合了数据片和程序片,以深入了解系统行为之间的因果关系。为了应对大量细粒度的来源痕迹,我们提出了使用启发过滤器来减少来源数量,并提出了一种称为“非预处理来源切片”的来源切片技术,该技术直接查询来源痕迹,而无需事先恢复所有来源实体和依赖关系。我们使用一个众所周知的生态网络标志模型“狼-羊-捕食”来评估性能和效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dependency Provenance in Agent Based Modeling
Researchers who use agent-based models (ABM) to model social patterns often focus on the model's aggregate phenomena. However, aggregation of individuals complicates the understanding of agent interactions and the uniqueness of individuals. We develop a method for tracing and capturing the provenance of individuals and their interactions in the Net Logo ABM, and from this create a "dependency provenance slice", which combines a data slice and a program slice to yield insights into the cause-effect relations among system behaviors. To cope with the large volume of fine-grained provenance traces, we propose use-inspired filters to reduce the amount of provenance, and a provenance slicing technique called "non-preprocessing provenance slicing" that directly queries over provenance traces without recovering all provenance entities and dependencies beforehand. We evaluate performance and utility using a well known ecological Net Logo model called "wolf-sheep-predation".
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Policy Derived Access Rights in the Social Cloud Accelerating In-memory Cross Match of Astronomical Catalogs Scientific Analysis by Queries in Extended SPARQL over a Scalable e-Science Data Store Malleable Access Rights to Establish and Enable Scientific Collaboration An Autonomous Security Storage Solution for Data-Intensive Cooperative Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1