{"title":"将物品打包成多个背包","authors":"Lin Chen, Guochuan Zhang","doi":"10.1145/3233524","DOIUrl":null,"url":null,"abstract":"We consider a natural generalization of the classical multiple knapsack problem in which instead of packing single items we are packing groups of items. In this problem, we have multiple knapsacks and a set of items partitioned into groups. Each item has an individual weight, while the profit is associated with groups rather than items. The profit of a group can be attained if and only if every item of this group is packed. Such a general model finds applications in various practical problems, e.g., delivering bundles of goods. The tractability of this problem relies heavily on how large a group could be. Deciding if a group of items of total weight 2 could be packed into two knapsacks of unit capacity is already NP-hard and it thus rules out a constant-approximation algorithm for this problem in general. We then focus on the parameterized version where the total weight of items in each group is bounded by a factor δ of the total capacity of all knapsacks. Both approximation and inapproximability results with respect to δ are derived. We also show that, depending on whether the number of knapsacks is a constant or part of the input, the approximation ratio for the problem, as a function on δ, changes substantially, which has a clear difference from the classical multiple knapsack problem.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Packing Groups of Items into Multiple Knapsacks\",\"authors\":\"Lin Chen, Guochuan Zhang\",\"doi\":\"10.1145/3233524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a natural generalization of the classical multiple knapsack problem in which instead of packing single items we are packing groups of items. In this problem, we have multiple knapsacks and a set of items partitioned into groups. Each item has an individual weight, while the profit is associated with groups rather than items. The profit of a group can be attained if and only if every item of this group is packed. Such a general model finds applications in various practical problems, e.g., delivering bundles of goods. The tractability of this problem relies heavily on how large a group could be. Deciding if a group of items of total weight 2 could be packed into two knapsacks of unit capacity is already NP-hard and it thus rules out a constant-approximation algorithm for this problem in general. We then focus on the parameterized version where the total weight of items in each group is bounded by a factor δ of the total capacity of all knapsacks. Both approximation and inapproximability results with respect to δ are derived. We also show that, depending on whether the number of knapsacks is a constant or part of the input, the approximation ratio for the problem, as a function on δ, changes substantially, which has a clear difference from the classical multiple knapsack problem.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3233524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3233524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider a natural generalization of the classical multiple knapsack problem in which instead of packing single items we are packing groups of items. In this problem, we have multiple knapsacks and a set of items partitioned into groups. Each item has an individual weight, while the profit is associated with groups rather than items. The profit of a group can be attained if and only if every item of this group is packed. Such a general model finds applications in various practical problems, e.g., delivering bundles of goods. The tractability of this problem relies heavily on how large a group could be. Deciding if a group of items of total weight 2 could be packed into two knapsacks of unit capacity is already NP-hard and it thus rules out a constant-approximation algorithm for this problem in general. We then focus on the parameterized version where the total weight of items in each group is bounded by a factor δ of the total capacity of all knapsacks. Both approximation and inapproximability results with respect to δ are derived. We also show that, depending on whether the number of knapsacks is a constant or part of the input, the approximation ratio for the problem, as a function on δ, changes substantially, which has a clear difference from the classical multiple knapsack problem.