{"title":"循环矩阵与cnn的稳定性理论","authors":"M. Joy, V. Tavsanoglu","doi":"10.1109/CNNA.1994.381685","DOIUrl":null,"url":null,"abstract":"In this paper we show that feedback matrices of ring CNNs are block circulants; as special cases, for example, feedback matrices of one-dimensional ring CNNs are circulant matrices. Circulants and their close relations the block circulants possess many pleasant properties which allow one to describe their spectrum completely. After deriving the spectrum of the feedback operator we present the main theorem of this paper which gives a parameter range for which convergence of the CNN dynamical system is assured.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Circulant matrices and the stability theory of CNNs\",\"authors\":\"M. Joy, V. Tavsanoglu\",\"doi\":\"10.1109/CNNA.1994.381685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we show that feedback matrices of ring CNNs are block circulants; as special cases, for example, feedback matrices of one-dimensional ring CNNs are circulant matrices. Circulants and their close relations the block circulants possess many pleasant properties which allow one to describe their spectrum completely. After deriving the spectrum of the feedback operator we present the main theorem of this paper which gives a parameter range for which convergence of the CNN dynamical system is assured.<<ETX>>\",\"PeriodicalId\":248898,\"journal\":{\"name\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1994.381685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文证明了环形cnn的反馈矩阵是块循环;作为特殊情况,如一维环状cnn的反馈矩阵是循环矩阵。环子及其密切关系块环子具有许多令人愉快的性质,使人们能够完整地描述它们的谱。在导出反馈算子的谱后,给出了本文的主要定理,给出了保证CNN动力系统收敛的参数范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Circulant matrices and the stability theory of CNNs
In this paper we show that feedback matrices of ring CNNs are block circulants; as special cases, for example, feedback matrices of one-dimensional ring CNNs are circulant matrices. Circulants and their close relations the block circulants possess many pleasant properties which allow one to describe their spectrum completely. After deriving the spectrum of the feedback operator we present the main theorem of this paper which gives a parameter range for which convergence of the CNN dynamical system is assured.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realisation of a digital cellular neural network for image processing Convergence and stability of the FSR CNN model A versatile CMOS building block for fully analogically-programmable VLSI cellular neural networks A fast, complex and efficient test implementation of the CNN Universal Machine Optoelectronic cellular neural networks based on amorphous silicon thin film technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1