{"title":"自动识别阿拉伯语方言在社交媒体","authors":"F. Sadat, Farnaz Kazemi, Atefeh Farzindar","doi":"10.1145/2632188.2632207","DOIUrl":null,"url":null,"abstract":"Modern Standard Arabic (MSA) is the formal language in most Arabic countries. Arabic Dialects (AD) or daily language differs from MSA especially in social media communication. However, most Arabic social media texts have mixed forms and many variations especially between MSA and AD. This paper aims to bridge the gap between MSA and AD by providing a framework for AD classification using probabilistic models across social media datasets. We present a set of experiments using the character n-gram Markov language model and Naive Bayes classifiers with detailed examination of what models perform best under different conditions in social media context. Experimental results show that Naive Bayes classifier based on character bi-gram model can identify the 18 different Arabic dialects with a considerable overall accuracy of 98%. This work is a first-step towards an ultimate goal of a translation system from Arabic to English and French, within the ASMAT project","PeriodicalId":178656,"journal":{"name":"Proceedings of the first international workshop on Social media retrieval and analysis","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Automatic identification of arabic dialects in social media\",\"authors\":\"F. Sadat, Farnaz Kazemi, Atefeh Farzindar\",\"doi\":\"10.1145/2632188.2632207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern Standard Arabic (MSA) is the formal language in most Arabic countries. Arabic Dialects (AD) or daily language differs from MSA especially in social media communication. However, most Arabic social media texts have mixed forms and many variations especially between MSA and AD. This paper aims to bridge the gap between MSA and AD by providing a framework for AD classification using probabilistic models across social media datasets. We present a set of experiments using the character n-gram Markov language model and Naive Bayes classifiers with detailed examination of what models perform best under different conditions in social media context. Experimental results show that Naive Bayes classifier based on character bi-gram model can identify the 18 different Arabic dialects with a considerable overall accuracy of 98%. This work is a first-step towards an ultimate goal of a translation system from Arabic to English and French, within the ASMAT project\",\"PeriodicalId\":178656,\"journal\":{\"name\":\"Proceedings of the first international workshop on Social media retrieval and analysis\",\"volume\":\"255 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the first international workshop on Social media retrieval and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2632188.2632207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the first international workshop on Social media retrieval and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632188.2632207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic identification of arabic dialects in social media
Modern Standard Arabic (MSA) is the formal language in most Arabic countries. Arabic Dialects (AD) or daily language differs from MSA especially in social media communication. However, most Arabic social media texts have mixed forms and many variations especially between MSA and AD. This paper aims to bridge the gap between MSA and AD by providing a framework for AD classification using probabilistic models across social media datasets. We present a set of experiments using the character n-gram Markov language model and Naive Bayes classifiers with detailed examination of what models perform best under different conditions in social media context. Experimental results show that Naive Bayes classifier based on character bi-gram model can identify the 18 different Arabic dialects with a considerable overall accuracy of 98%. This work is a first-step towards an ultimate goal of a translation system from Arabic to English and French, within the ASMAT project