基于小样本集的朴素贝叶斯分类算法

Yuguang Huang, Lei Li
{"title":"基于小样本集的朴素贝叶斯分类算法","authors":"Yuguang Huang, Lei Li","doi":"10.1109/CCIS.2011.6045027","DOIUrl":null,"url":null,"abstract":"Naive Bayes algorithm is one of the most effective methods in the field of text classification, but only in the large training sample set can it get a more accurate result. The requirement of a large number of samples not only brings heavy work for previous manual classification, but also puts forward a higher request for storage and computing resources during the computer post-processing. This paper mainly studies Naïve Bayes classification algorithm based on Poisson distribution model, and the experimental results show that this method keeps high classification accuracy even in small sample set.","PeriodicalId":128504,"journal":{"name":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"Naive Bayes classification algorithm based on small sample set\",\"authors\":\"Yuguang Huang, Lei Li\",\"doi\":\"10.1109/CCIS.2011.6045027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Naive Bayes algorithm is one of the most effective methods in the field of text classification, but only in the large training sample set can it get a more accurate result. The requirement of a large number of samples not only brings heavy work for previous manual classification, but also puts forward a higher request for storage and computing resources during the computer post-processing. This paper mainly studies Naïve Bayes classification algorithm based on Poisson distribution model, and the experimental results show that this method keeps high classification accuracy even in small sample set.\",\"PeriodicalId\":128504,\"journal\":{\"name\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS.2011.6045027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2011.6045027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

摘要

朴素贝叶斯算法是文本分类领域中最有效的方法之一,但只有在大的训练样本集上才能得到更准确的结果。大量样本的需求不仅给以往的人工分类带来了繁重的工作,而且在计算机后处理过程中对存储和计算资源提出了更高的要求。本文主要研究了Naïve基于泊松分布模型的贝叶斯分类算法,实验结果表明,该方法即使在小样本集中也能保持较高的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Naive Bayes classification algorithm based on small sample set
Naive Bayes algorithm is one of the most effective methods in the field of text classification, but only in the large training sample set can it get a more accurate result. The requirement of a large number of samples not only brings heavy work for previous manual classification, but also puts forward a higher request for storage and computing resources during the computer post-processing. This paper mainly studies Naïve Bayes classification algorithm based on Poisson distribution model, and the experimental results show that this method keeps high classification accuracy even in small sample set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dynamic and integrated load-balancing scheduling algorithm for Cloud datacenters A CPU-GPU hybrid computing framework for real-time clothing animation The communication of CAN bus used in synchronization control of multi-motor based on DSP An improved dynamic provable data possession model Ensuring the data integrity in cloud data storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1