{"title":"基于小样本集的朴素贝叶斯分类算法","authors":"Yuguang Huang, Lei Li","doi":"10.1109/CCIS.2011.6045027","DOIUrl":null,"url":null,"abstract":"Naive Bayes algorithm is one of the most effective methods in the field of text classification, but only in the large training sample set can it get a more accurate result. The requirement of a large number of samples not only brings heavy work for previous manual classification, but also puts forward a higher request for storage and computing resources during the computer post-processing. This paper mainly studies Naïve Bayes classification algorithm based on Poisson distribution model, and the experimental results show that this method keeps high classification accuracy even in small sample set.","PeriodicalId":128504,"journal":{"name":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":"{\"title\":\"Naive Bayes classification algorithm based on small sample set\",\"authors\":\"Yuguang Huang, Lei Li\",\"doi\":\"10.1109/CCIS.2011.6045027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Naive Bayes algorithm is one of the most effective methods in the field of text classification, but only in the large training sample set can it get a more accurate result. The requirement of a large number of samples not only brings heavy work for previous manual classification, but also puts forward a higher request for storage and computing resources during the computer post-processing. This paper mainly studies Naïve Bayes classification algorithm based on Poisson distribution model, and the experimental results show that this method keeps high classification accuracy even in small sample set.\",\"PeriodicalId\":128504,\"journal\":{\"name\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"83\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS.2011.6045027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2011.6045027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Naive Bayes classification algorithm based on small sample set
Naive Bayes algorithm is one of the most effective methods in the field of text classification, but only in the large training sample set can it get a more accurate result. The requirement of a large number of samples not only brings heavy work for previous manual classification, but also puts forward a higher request for storage and computing resources during the computer post-processing. This paper mainly studies Naïve Bayes classification algorithm based on Poisson distribution model, and the experimental results show that this method keeps high classification accuracy even in small sample set.