基于萤火虫算法的STATCOM控制器增强电力系统动态稳定性

Subir Datta, S. Deb, Robert Singh, Rahul Roy, Akibul Islam, S. Adhikari
{"title":"基于萤火虫算法的STATCOM控制器增强电力系统动态稳定性","authors":"Subir Datta, S. Deb, Robert Singh, Rahul Roy, Akibul Islam, S. Adhikari","doi":"10.1109/ICICCSP53532.2022.9862405","DOIUrl":null,"url":null,"abstract":"Nowadays, oscillation due to low frequency is a very serious issue in power system. It affects steady state power transfer which hampers security and economic operation of the system. FACTs devices play a key role to mitigate the low frequency oscillations. Therefore, in this paper STATCOM and its associated controllers are considered in order to damp out oscillations produced due to low frequency in power system and Firefly Algorithm (FA) is also used to optimize the gain values of STATCOM controllers. An extensive simulation of the study system has been implemented using MATLAB/Simulink platform. System responses have been obtained with PSS and also with compensator comprising of both PSS and STATCOM. Time domain simulation studies are utilized to check effectiveness of the FA based proposed controllers. The simulation results obtained revealed that PSS with STATCOM has excellent capabilities in damping power system oscillations with low frequency.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Firefly Algorithm based STATCOM Controller for Enhancement of Power System Dynamic Stability\",\"authors\":\"Subir Datta, S. Deb, Robert Singh, Rahul Roy, Akibul Islam, S. Adhikari\",\"doi\":\"10.1109/ICICCSP53532.2022.9862405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, oscillation due to low frequency is a very serious issue in power system. It affects steady state power transfer which hampers security and economic operation of the system. FACTs devices play a key role to mitigate the low frequency oscillations. Therefore, in this paper STATCOM and its associated controllers are considered in order to damp out oscillations produced due to low frequency in power system and Firefly Algorithm (FA) is also used to optimize the gain values of STATCOM controllers. An extensive simulation of the study system has been implemented using MATLAB/Simulink platform. System responses have been obtained with PSS and also with compensator comprising of both PSS and STATCOM. Time domain simulation studies are utilized to check effectiveness of the FA based proposed controllers. The simulation results obtained revealed that PSS with STATCOM has excellent capabilities in damping power system oscillations with low frequency.\",\"PeriodicalId\":326163,\"journal\":{\"name\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICCSP53532.2022.9862405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,低频振荡是电力系统中一个非常严重的问题。它影响了系统的稳态输电,影响了系统的安全和经济运行。事实器件在减轻低频振荡方面起着关键作用。因此,本文考虑STATCOM及其相关控制器对电力系统低频产生的振荡进行阻尼,并采用萤火虫算法(Firefly Algorithm, FA)对STATCOM控制器的增益值进行优化。利用MATLAB/Simulink平台对学习系统进行了广泛的仿真。用PSS和由PSS和STATCOM组成的补偿器分别得到了系统的响应。利用时域仿真研究验证了所提控制器的有效性。仿真结果表明,带STATCOM的PSS对电力系统低频振荡具有良好的抑制能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Firefly Algorithm based STATCOM Controller for Enhancement of Power System Dynamic Stability
Nowadays, oscillation due to low frequency is a very serious issue in power system. It affects steady state power transfer which hampers security and economic operation of the system. FACTs devices play a key role to mitigate the low frequency oscillations. Therefore, in this paper STATCOM and its associated controllers are considered in order to damp out oscillations produced due to low frequency in power system and Firefly Algorithm (FA) is also used to optimize the gain values of STATCOM controllers. An extensive simulation of the study system has been implemented using MATLAB/Simulink platform. System responses have been obtained with PSS and also with compensator comprising of both PSS and STATCOM. Time domain simulation studies are utilized to check effectiveness of the FA based proposed controllers. The simulation results obtained revealed that PSS with STATCOM has excellent capabilities in damping power system oscillations with low frequency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact on Electrical Distribution Networks with The Integration of Shunt Capacitor Model Using Exhaustive Search Based Load Flow Algorithm A Smart Solar Charge Controller Based on IOT Technology with Hardware Implementation Message from the Chairman, Sree Group Material Properties and Tool selection for Friction Stir Welding: A Review Adversarial Attacks against Machine Learning Classifiers: A Study of Sentiment Classification in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1