{"title":"k -的算法是对旅游代理旅游路线的定义","authors":"Eni Irfiani, Fintri Indriyani","doi":"10.33022/ijcs.v9i1.244","DOIUrl":null,"url":null,"abstract":"Government support for the development of tourism has an impact on the growth of business opportunities for travel agents. Along with the advancement of the domestic travel sector, tour & travel agent business forms have sprung up that influence business competition between travel agents. The problem with tour & travel agents is the lack of information about tourist routes that are most in-demand by customers. To solve this problem the method used to classify the most desirable travel routes using the method of data mining is clustering with the K-Means algorithm. Based on the results of the study found three groups of travel routes, namely the most desirable travel routes by 20%, the trips that are in demand by 30% and less desirable trips by 50%.","PeriodicalId":127788,"journal":{"name":"International Journal in Computer Simulation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algoritma K-Means Untuk Clustering Rute Perjalanan Wisata Pada Agen Tour & Travel\",\"authors\":\"Eni Irfiani, Fintri Indriyani\",\"doi\":\"10.33022/ijcs.v9i1.244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Government support for the development of tourism has an impact on the growth of business opportunities for travel agents. Along with the advancement of the domestic travel sector, tour & travel agent business forms have sprung up that influence business competition between travel agents. The problem with tour & travel agents is the lack of information about tourist routes that are most in-demand by customers. To solve this problem the method used to classify the most desirable travel routes using the method of data mining is clustering with the K-Means algorithm. Based on the results of the study found three groups of travel routes, namely the most desirable travel routes by 20%, the trips that are in demand by 30% and less desirable trips by 50%.\",\"PeriodicalId\":127788,\"journal\":{\"name\":\"International Journal in Computer Simulation\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal in Computer Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33022/ijcs.v9i1.244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal in Computer Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33022/ijcs.v9i1.244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Algoritma K-Means Untuk Clustering Rute Perjalanan Wisata Pada Agen Tour & Travel
Government support for the development of tourism has an impact on the growth of business opportunities for travel agents. Along with the advancement of the domestic travel sector, tour & travel agent business forms have sprung up that influence business competition between travel agents. The problem with tour & travel agents is the lack of information about tourist routes that are most in-demand by customers. To solve this problem the method used to classify the most desirable travel routes using the method of data mining is clustering with the K-Means algorithm. Based on the results of the study found three groups of travel routes, namely the most desirable travel routes by 20%, the trips that are in demand by 30% and less desirable trips by 50%.